
Groÿer Beleg

Java Code Generation for Dresden

OCL2 for Eclipse

submitted by

Claas Wilke

born 16.04.1983 in Buxtehude

Technische Universität Dresden

Fakultät Informatik

Institut für Software- und Multimediatechnik

Lehrstuhl Softwaretechnologie

Supervisor: Dr.-Ing. Birgit Demuth

Professor: Prof. Dr. rer. nat. habil. Uwe Aÿmann

Submitted February 19, 2009

II

III

IV

Contents

1 Introduction 1

2 The Dresden OCL Toolkit 3
2.1 The Dresden OCL Toolkit . 3
2.2 The Dresden OCL2 Toolkit . 4
2.3 Dresden OCL2 for Eclipse . 4

3 Employed Programming Techniques 7
3.1 Aspect-Oriented Programming 7
3.2 StringTemplate . 8

4 Requirement Analysis 11
4.1 The DOT2 and Requirement Analysis 11

4.1.1 Variation of the Fragment Generation 11
4.1.2 Variation of the Fragment Instrumentation 13
4.1.3 Parametrization of the Code Generation 14

4.2 Related Work . 16

5 Design and Fragment Generation 17
5.1 The Architecture . 17

5.1.1 The Package Structure . 17
5.1.2 The Class Structure . 17

5.2 Type Mapping . 23
5.2.1 Primitive Types . 23
5.2.2 Enumerations . 24
5.2.3 Tuples . 25
5.2.4 Collection Types . 25
5.2.5 Special OCL types . 25

5.3 Fragment Generation . 26
5.3.1 Property Call Expressions 26
5.3.2 Operation Call Expressions 27
5.3.3 Collection Literal Expressions 30
5.3.4 Iterator Expressions . 30

6 Fragment Instrumentation 33
6.1 Initial and Derived Values . 33

6.1.1 Initial Values with Init . 33
6.1.2 Derived Values with Derive 34

6.2 Method Implementation with Body 34

V

VI CONTENTS

6.3 Attribute and Method De�nition with Def 36
6.4 Preconditions . 38
6.5 Postconditions . 41

6.5.1 The Special Property @pre 41
6.5.2 The Special Operation OclIsNew 42

6.6 Invariants . 45
6.6.1 Strong Veri�cation . 45
6.6.2 Weak Veri�cation . 46
6.6.3 Transactional Veri�cation 48

6.7 The Special Operation AllInstances 48

7 GUI Implementation and Test 51
7.1 The Code Generation Wizard . 51
7.2 Tests on the Implementation . 51

7.2.1 Fragment Generation . 54
7.2.2 Fragment Instrumentation 54
7.2.3 Performance Test . 54

8 Evaluation and Outlook on Future Works 57
8.1 The Task of this Work . 57
8.2 The Provided Features . 57

8.2.1 Variation of the Fragment Generation 57
8.2.2 Variation of the Fragment Instrumentation 58
8.2.3 Parameterization of the Code Generation 59

8.3 Outlook on Future Works . 59

A Type Mapping 61

B Operation Mapping 63

C Code Fragment Templates 69

D The Royal and Loyal Example 77

Bibliography 88

Chapter 1

Introduction

Today, the Object Constraint Language (OCL) is an accepted and common tech-
nique to enrich UML models with constraints and model extensions. The code
generation for object-oriented languages like Java from UML models is com-
monly used in all major case tools. But the support of OCL code generation
is commonly missing or incomplete. The Dresden OCL Toolkit provides a col-
lection of tools enabling software developers to extend their toolkits by using
features developed for OCL such as an OCL parser or an OCL interpreter. The
code generation of OCL constraints was supported by the Dresden OCL Toolkit
in its last version which is outdated nowadays. Furthermore, the old code gen-
erator creates unreadable and complicate Java code which can not be refactored
easily.

OCL and the Dresden OCL Toolkit have evolved and an usable code gener-
ator with a satisfying support of the OCL 2.0 standard is missing. This work
will tackle that task. A new Java code generator which will support as much
features of the OCL 2.0 standard as possible will be developed. Furthermore,
this work will analyze how aspect-oriented techniques can be used to instrument
generated code into existing model code in Java.

The Object Constraint Language (OCL) is a �standard add-on of the Uni�ed
Modeling Language� [WK04, p. 19]. OCL enables the software developer to
extend his UML diagrams with additional and more precise information. New
attributes, associations and methods can be de�ned, initial and derived values
or operation bodies can be added. The main features of OCL provide the de�ni-
tion of constraints for preconditions (conditions which must be valid before the
execution of a method), postconditions (conditions which must be valid after
the execution of a method) and invariants (conditions which must be valid dur-
ing the lifetime of an UML object). Such constraints are enforced and checked
during the runtime of the constrained model code.

The �rst version of OCL was developed by IBM in 1995 [HH01]. In 1997
OCL became part of the Uni�ed Modeling Language (UML) and was released as
an Object Management Group (OMG) speci�cation in the version 1.1 [Wik09]
[OMG97]. In 1999 the development of UML 2.0 and OCL 2.0 were started with
the UML 2.0 and UML 2.0 OCL Request for Proposals [Wik09]. In September
2004 the 2.0 versions of UML and OCL were released. The OCL 2.0 speci�cation
has been published by the OMG and is available at [OMG06].

The major task of this work is the development of a new Java code gener-

1

2 CHAPTER 1. INTRODUCTION

ator for the Dresden OCL Toolkit. The minor thesis (Groÿer Beleg) of Katrin
Eisenreich [Eis06] who already evaluated the code generator of the last toolkit
version will be used as a base for the requirements analysis and the design of
the new Java code generator. The new code generator will use aspect-oriented
programming techniques to realize the fragment code instrumentation. A sup-
port of the OCL as far as supported by the Essential OCL meta model will be
provided. The implementation will be tested and evaluated.

This work is structured as follows: The �rst part deals with the Dresden
OCL Toolkit and its di�erent versions which will be introduced in chapter 2.
Afterwards, some programming techniques used for the new code generator and
its generated code such as aspect-oriented programming will be presented in
chapter 3. A requirement analysis based on the minor thesis of Katrin Eisen-
reich [Eis06] and the OCL2J approach [BDL04] will follow in chapter 4. In
chapter 5 and 6, the main part of this work, the design of the code generator,
the fragment code generation (including type the operation mapping) and the
fragment code instrumentation will be explained. Chapter 7 will discuss brie�y
the implementation of a graphical user interface and will present the test suites
which were used during development of the Java code generator. Finally, chap-
ter 8 will evaluate the results of this work and will look at some tasks which
could be realized in future works.

Some typographical conventions are used in this work to highlight special
key words or language constructs:

• Italics are used to highlight important keywords and scienti�c terms.

• Typewriter font is used to sign model elements or language constructs
of di�erent programming and modeling languages such as Java or OCL.

• Blue color is used to denote hyperlinks between references in the digital
publication of this work.

Chapter 2

The Dresden OCL Toolkit

The Dresden OCL Toolkit has been developed at the Technische Universität
Dresden since 1999. Today, the toolkit is one of the major software projects at
the chair of software technology and three di�erent versions of the toolkit have
already been released. Figure 2.1 shows a time line illustrating the di�erent
releases of OCL and the Dresden OCL Toolkit.

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

First OCL version
developed by IBM

UML 1.1 and
UML OCL 1.1

Standard

Start of UML2.0
and OCL2.0
(Request for
Proposals)

UML 2.0 and
UML 2.0 OCL

Standard

First work with
OCL by Andreas

Schmidt

Start of the
Dresden OCL2
Toolkit (DOT2)
development

Development of
the Pivot Model

Release of the
Dresden OCL
Toolkit (DOT)

Release of the
Dresden OCL2
Toolkit (DOT2)

Release of
Dresden OCL2

for Eclipse
(DOT4Eclipse)

Figure 2.1: The di�erent release of OCL and the Dresden OCL Toolkit.

2.1 The Dresden OCL Toolkit

A �rst work which examined OCL at the Techische Universität Dresden was
done by Andreas Schmidt in 1998, examining how OCL could be mapped to
the Structured Query Language (SQL) [Sch98]. The �rst base for the toolkit
was realized by Frank Finger in 1999 [Fin99] [Fin00]. An OCL standard li-
brary and possibilities to load and parse UML models and OCL constraints
and furthermore the possibility to generate Java code from OCL constraints
were implemented. The instrumentation of the created Java code was realized
by Ralf Wiebicke [Wie00]. This �rst released version of the toolkit was called
Dresden OCL Toolkit (DOT).

3

4 CHAPTER 2. THE DRESDEN OCL TOOLKIT

2.2 The Dresden OCL2 Toolkit

The development of the second version of the toolkit started in 2003. The basis
of this version was created with the adaptation of the DOT to the Netbeans
MDR Repository by Stefan Ocke [Ock03]. This version of the toolkit was named
Dresden OCL2 Toolkit (DOT2). It was based on the OCL standard in the
version 2.0. The DOT2 provided the loading and parsing of UML models and
OCL constraints and the transformation of constrained models into SQL [Hei05]
[Hei06].

The possibility to generate and instrument Java code for OCL constraints
was adapted from the DOT to the DOT2 by Ronny Brandt in 2006 [Bra06]. The
DOT2 is the last release of the Dresden OCL Toolkit which provides Java code
generation and instrumentation. Thus the DOT2 is the basis for the evaluation
of the code generation in this work.

2.3 Dresden OCL2 for Eclipse

Since 2007 the DOT2 has been replaced by a new version of the Dresden OCL
Toolkit. The implementation of a pivot model by Matthias Bräuer [Brä07] made
the newest version of the toolkit independent from speci�c repositories and it
can therefore be adapted to many di�erent meta models. By now, adaptions to
the Netbeans MDR Repository used by the DOT2, to the UML2 meta model of
the Eclipse Model Development Tools Project [MDT09] and to the Ecore meta
model are supported.

In addition to the implementation of the pivot model an OCL parser to
load and verify OCL constraints [Thi07] and an OCL interpreter [Bra07] were
integrated. For this last release of the toolkit named Dresden OCL2 for Eclipse
(DOT4Eclipse) the new code generator of this work will be developed.

The architecture of DOT4Eclipse is shown in �gure 2.2. The architecture is
the result of the work of Matthias Bräuer [Brä07] and can easily be extended.
The architecture can be separated into three layers: The back-end, the toolkit
basis and the toolkit tools.

The back-end layer represents the repository and the meta model which
can easily be exchanged because all other packages of the DOT4Eclipse do
not directly communicate with the meta model but use the Pivot Model which
delegates all requests to the meta model instead. For example a possible meta
model is the UML2 meta model of the Eclipse Model Development Tools Project
[MDT09].

The second layer is the toolkit basis layer which contains the Pivot Model,
Essential OCL and the Model Bus. The use of the Pivot Model was mentioned
before. The package Essential OCL extends the Pivot Model and implements
the OCL Standard Library to extend loaded models with OCL constraints. The
package Model Bus loads, manages and provides access to models the user wants
to work with.

The third layer contains all tools which are provided by the toolkit. By now
this layer already contains the OCL interpreter and the OCL parser which uses
the packages of the second layer to load, verify and interpret OCL constraints.
The new code generator will be a third tool which will be located in the third
layer and which will use the Pivot Model, the Essential OCL and the Model

2.3. DRESDEN OCL2 FOR ECLIPSE 5

Meta Model

OCL Interpreter OCL Parser

Pivot Model Essential OCL Model Bus

OCL2JavaTools

Toolkit Basis

Back-End

(including repository)

exchangeable

Eclipse Plug-In Plug-In Dependency

Figure 2.2: The architecture of DOT4Eclipse.

6 CHAPTER 2. THE DRESDEN OCL TOOLKIT

Bus package.
The DOT4Eclipse has been developed as a set of Eclipse plug-ins. All pack-

ages which are located in the Toolkit Basis and Tools Layer represent di�erent
Eclipse plug-ins. Additionally, the DOT4Eclipse contains some plug-ins to pro-
vide GUI elements such as wizards and examples to run the DOT4Eclipse with
some simple models and OCL expressions.

Chapter 3

Employed Programming

Techniques

This Chapter presents some techniques which were used to realize the newly de-
veloped code generator. At �rst, aspect-oriented programming will be explained
and the language AspectJ will be presented. Afterwards the template engine
StringTemplate will be introduced.

3.1 Aspect-Oriented Programming

Aspect-oriented programming (AOP) is a programming paradigm which solves
some problems of object-oriented programming such as crosscutting concerns
[AK07].

Crosscutting concerns are �design and implementation problems that cut
across several places in [a] program� [AK07]. They occur in many software
systems and their implementation leads to code tangling, scattering and code
replication [AK07]. A typical example for crosscutting concerns are logging
mechanisms which log some runtime activities such as the entry of any method.
If such a logging mechanism will be implemented manually, any method of any
class which will be logged has to be refactored by adding additional lines for
the logging mechanism. If the logging mechanism shall be removed or adapted,
any of these methods has to be refactored again. Another typical example for
crosscutting concerns are constraint implementations [Eis06, p. 32].

AOP de�nes additional code fragments in separate �les called aspects. An
aspect is a piece of code which [AK07] [ABR06]:

1. Speci�es one or several points in the code which cause events, if the control
�ow reaches these points (join points),

2. Speci�es sets of join points (pointcuts),

3. De�nes what happens if one of these events occur; meaning which code
will be executed additionally at these points (advices).

Aspects are always de�ned in relation to a core, are speci�ed separately from
this core and are woven into this core by an aspect weaver [Aÿm03, p. 260].

7

8 CHAPTER 3. EMPLOYED PROGRAMMING TECHNIQUES� �
1 public aspect LoggingAspect {
2

3 protected pointcut
4 publicMethods(SampleClass aClass):
5 call(public SampleClass.∗(..)) && this(aClass);
6

7 before(SampleClass aClass) : publicMethods(aClass) {
8 System.out.println("Entered a public method.");
9 }

10 }� �
Listing 3.1: A simple logging aspect.

For the logging example such an aspect must de�ne a pointcut which de-
scribes the entry joinpoint of any method which shall be logged and an advice
describing the additional logging code which shall be executed before the exe-
cution of any of these methods.

Some languages which realize aspect-oriented programming are AspectJ, As-
pectC++ and Eos [AK07].

The developed code generator of DOT4Eclipse uses AspectJ to instrument
the generated code fragments for OCL constraints into the Java classes of the
constrained model. AspectJ will be introduced brie�y in the following. �AspectJ
is a seamless aspect-oriented extension to the Java programming language that
enables clean modularization of [these] crosscutting concerns� [Asp09b].

Aspects de�ned by AspectJ are basically separated into pointcut de�nitions
and advice de�nitions. A simple aspect is shown in listing 3.1. It describes all
public methods of a class SampleClass in the pointcut publicMethods(Sample-
Class) and a simple advice which is executed before the call of these methods.

AspectJ provides instrumentation technologies for all constraint types de-
�ned in OCL. Post- and preconditions can be de�ned by using before or after
advices. Properties can easily be observed by the pointcut types get and set.
More keywords exist to support the realization of de�nitions, initializations and
body expressions.

A detailed documentation of AspectJ is available in [Böh06] and at [Asp09b].
More details about the instrumentation of OCL constraints using AspectJ are
presented in chapter 6.

3.2 StringTemplate

StringTemplate is �a java template engine to generate source code, [...] or other
formatted text� [Str09]. It has already been used during the development of
the Ocl22Sql code generation tool of the DOT2 developed by Florian Heiden-
reich [Hei06]. Heidenreich evaluated di�erent template engines and decided that
StringTemplate was the template engine which satis�ed the requirements of the
code generation tool best [Hei06, p. 34f].

During this work StringTemplate is used for fragment generation and frag-
ment instrumentation. Some simple examples for StringTemplate templates
will now be explained. More information about StringTemplate is available at
[Str09].

3.2. STRINGTEMPLATE 9� �
1 templateName(param1, param2, ...) ::=<<
2 This is some generated code using $param1$ and $param2$
3 at specified positions.
4 >>� �

Listing 3.2: A simple StringTemplate.� �
1 $if(param1)$
2 This code contains $param1$.
3 $else$
4 Param1 was not set.
5 $endif$� �

Listing 3.3: An if expression.� �
1 $values, types:{aValue, aType |
2 $aValue$ is of type $aType$. }; separator = "\n"$� �

Listing 3.4: An iteration.� �
1 template1(param1) ::=<<
2 $template2(param1 = param1)$� �

Listing 3.5: A template referring to another template.

StringTemplates can be de�ned in text �les and loaded into class instances
of StringTemplateAdapter which I refactored from the class Declarative-

Template developed by Florian Heidenreich [Hei06, p. 42�]. The templates
can be bound with parameters by using the method setAttribte("name",

"value") and the template can be converted into code using the method to-

String().
The structure of a simple template which can be parameterized with the

parameters param1 and param2 is shown in listing 3.2. The structure of an
if expression which checks if the parameter param1 is set and prints di�erent
code depending on this condition is shown in listing 3.3. Listing 3.4 shows an
iteration over the parameters values and types which can be set multiple times
using the method setAttribute(..) again and again. The code contained
in the iteration is printed for any iteration of the two parameters. Finally,
StringTemplates can refer to other templates. Listing 3.5 shows a template
template1(param1) which refers to the template template2(param1).

10 CHAPTER 3. EMPLOYED PROGRAMMING TECHNIQUES

Chapter 4

Requirement Analysis

This chapter evaluates the Java code generator of the Dresden OCL2 Toolkit
(DOT2) and compares it with another existing tool called OCL2J. Advantages
and disadvantages of the code generators are presented and requirements and
improvements are developed.

4.1 The DOT2 and Requirement Analysis

The Java code generator of the DOT2 has already been evaluated during the
minor thesis (Groÿer Beleg) of Katrin Eisenreich in 2006 [Eis06]. Katrin Eisen-
reich did a variance analysis of the code generator and developed a feature
tree to compare di�erent code generators. Furthermore, she evaluated the code
generator of the DOT2 using this feature tree and pointed out some possible
improvements for following versions of the code generator. In the following the
features pointed out by Katrin Eisenreich are presented and discussed.

The features of code generation were separated into three di�erent categories
[Eis06, p. 17�]:

1. The variation of the fragment generation,

2. the variation of the fragment instrumentation,

3. and the con�guration of the code generation.

4.1.1 Variation of the Fragment Generation

The category variation of fragment generation collects the following feature
points [Eis06, p. 17�]:

• The supported constraint types,

• coding conventions,

• the representation of OCL types,

• the access to model attributes in the generated code,

• and the technology to create the di�erent code fragments which are in-
strumented during the code instrumentation.

11

12 CHAPTER 4. REQUIREMENT ANALYSIS

Constraint Types

Generally, a code generator should support as much constraints of the OCL
speci�cation as possible. The new code generator which will be developed dur-
ing this work has to support all constraint types which are supported by the
Essential OCL meta model and the existing OCL parser of DOT4Eclipse.

The supported constraint types contain invariants, pre- and postconditions
like the code generator of the DOT2, but also initial and derived values, def-
initions of new attributes and methods, body expressions for methods and let
expressions to de�ne temporary variables. Messages and state expressions will
not be supported because they are not supported by Essential OCL [Thi07, p.
100].

Furthermore, the new code generator will support some special OCL opera-
tions like oclIsNew() and oclAllInstances() which are not supported by the
code generator of the DOT2.

Coding Conventions

The feature point coding conventions describes the possibility to format the
generated code to project speci�c coding conventions but also the possibility to
create code for di�erent programming languages.

The code generator developed during this work will only support the genera-
tion of Java code. But the code generator will be developed variably to provide
the possibility to extend or adapt the code generator for code generation of
other object-oriented programming languages. Coding conventions will not be
supported by the code generator because features to format code have already
been implemented in the Eclipse Java Development Workbench.

Representation of OCL Types

The DOT2 de�nes special types in Java for all OCL types. The use of such an
OCL standard library improves the code generation because the created frag-
ments become very simple.

However, a standard library also causes some disadvantages: The created
code contains overhead because a lot of the de�ned OCL types already exist in
Java (for example primitive types like String or Integer). The created code
contains more delegations to additionally de�ned Java objects and thus causes
less performance than possible [BDL04, p. 11f].

The code generator developed during this work will not use a complete stan-
dard library to implement the OCL types in Java. All types which can be rep-
resented by already existing Java types will be directly mapped. Some exclusive
types which can not be directly mapped to Java types will be implemented in
new Java classes.

Attribute Access

A common problem during code generation is the access to class attributes and
methods of the already existing model code. Java supports the declaration of
private or protected attributes and methods which are not visible for other class
instances. In [Eis06, p. 23�] di�erent solutions for attribute access are discussed.

4.1. THE DOT2 AND REQUIREMENT ANALYSIS 13

The developed code generator will instrument the created code fragments
using the aspect-oriented Java extension AspectJ. AspectJ supports an easy so-
lution for the access problem by providing a keyword privileged which en-
ables de�ned aspects to access private attributes and methods of a�ected class
instances [BDL05, p. 2].

Fragment Generation

The creation of code fragments will be implemented as in the old code generator
of the DOT2 by traversing over the abstract syntax graph of the constrained
model and its de�ned constraints.

The old code generator creates code fragments from strings which are di-
rectly implemented in the code of the code traversation [Eis06, p. 26]. Such a
technology is both ine�cient and hardly to refactor. Thus the new code gen-
erator will separate the traverse meachanism and the code generation by using
templates which are parameterized during the code generations. The templates
are externally saved. Thus the templates can be easily updated, exchanged and
refactored.

4.1.2 Variation of the Fragment Instrumentation

The fragment instrumentation can be separated into the following features
[Eis06, p. 29�]:

• The code instrumentation,

• the instrumentation location,

• the reversibility of the instrumentation,

• the technology used for instrumentation,

• and the reaction on violated constraints during runtime.

This work will use the aspect-oriented languageAspectJ to realize the im-
plementation. Thus some of the remarked features are strongly related to each
other an can not be evaluated independently. Fundamentally the instrumenta-
tion technology and the reaction on constraint violation remain.

Instrumentation Technology

The code generator of the DOT2 directly inserts the code fragments into the
a�ected classes. For some constraints new wrapper methods are added which
call the methods constrained by the generated code [Wie00, p. 14�]. This
attempt causes some disadvantages: The source code of all a�ected classes has
to be available because the code instrumentation does not work with Java byte
code. In addition to this fact the direct code instrumentation causes code which
can not be refactored easily. Constraint and model code can not be separated.
An independent refactoring of model and constraint code is not possible. The
reversibility of the instrumentation needs some precautions and marks in the
instrumented code [Eis06, p. 34�].

To avoid all the problems mentioned above, the new code generator will use
AspectJ to realize the instrumentation. The instrumentation code is not directly

14 CHAPTER 4. REQUIREMENT ANALYSIS

inserted into the Java source code but is declared in so-called aspects which are
woven by an Aspect Weaver into the model code (see also section 3.1).

This technology has a lot of advantages: The fragment code can be instru-
mented into Java source code and Java byte code as well. The source code of all
a�ected classes has not to be available [BDL04]. An independent refactoring of
constraint and model code is possible, the reversibility of the instrumentation
can be easily performed by executing the Java code without the aspect weaver.
Moreover by using AspectJ the implementation of special OCL operations such
as oclAllInstances() can easily be implemented which would be hard (if not
impossible) in simple Java code [BDL04, p. 41�].

Reaction on Constraint Violations

To react on violated constraints during the runtime of the constrained code, the
new code generator will use the same technology as the code generator of the
DOT2. The code generator will provide the possibility to con�gure a so-called
violation macro which has already been introduced by Ronny Brandt [Bra06, p.
16]. The violation macro represents some lines of code and will be executed at
any position in the code where a constraint is violated. Examples for violation
macros are a simple print statement such as System.out.println("Constraint
was violated."); or a throw statement of a new runtime exception such as
throw new RuntimeException("Constraint was violated.");.

4.1.3 Parametrization of the Code Generation

The last group of features pointed out by Katrin Eisenreich is the parametriza-
tion or con�guration of the code generation. Four major features belong to this
group [Eis06, p. 43�]:

• The selection of constraints for which code will be generated,

• the strength with which invariants will be veri�ed,

• inheritance principles for constraints,

• and the con�guration of violation macros.

The Selection of Constraints

The selection of constraints for code generation can be realized in a central
con�guration or decentral (for example by annotations in the constraint �les).
The con�guration can be realized by manual selection of all constraints or by
a rule based selection (for example all invariants could be selected) [Eis06, p.
43�]. The new code generator of DOT4Eclipse will provide a GUI wizard which
enables the user to do both, manual selection and rule based selection in a
central con�guration menu.

The Strength of Invariant Checks

A central question during constraint code generation is the question in which
situations during runtime invariants will be checked and veri�ed. Di�erent op-
tions are possible which would be useful in di�erent situations and user scenarios
[Eis06, p. 45] [Wie00, p. 22] [BDL04, p. 20f] [BDF+04, p. 30]:

4.1. THE DOT2 AND REQUIREMENT ANALYSIS 15

1. Invariants could be checked after the execution of any constructor and
the change of any attribute or association which is in scope of the invari-
ant condition. This range could be too strict in some scenarios, because
programmers could store temporary values in attributes or associations
during computation which violate constraints.

2. Invariants could be checked after the execution of any method of the con-
strained class. This variant could also be to strict for some user scenarios.

3. Invariants could be checked after the execution of any constructor or public
method of the constraint class. This variant could be to liberal for some
user scenarios.

4. Invariants could be checked after any method which was marked by the
programmer for example via an annotation.

5. And �nally, invariants could only be checked if the user calls a special
method at runtime such as checkConstraints(). This scenario is similar
to the transaction technique of database systems.

Due the fact that all the di�erent possibilities have advantages and disadvan-
tages, the new code generator of the DOT4Eclipse will enable the user to decide
which veri�cation technique he wants. The new code generator will provide the
three scenarios (1), (3) and (5) called strong veri�cation, weak veri�cation and
transactional veri�cation.

These three scenarios could be useful for users in di�erent situations. If a
user wants to verify strongly that his constraints are veri�ed after any change
of any dependent attribute he should use strong veri�cation. If he wants to
use attributes to temporary store values and constraints should only be veri�ed
if any external class instance wants to access values of the constrained class,
he should use weak veri�cation. If the user wants to work with databases or
other remote communication and the state of his constraint classes should be
only validated before data transmission, he should use the scenario transactional
veri�cation.

The Inheritance of Constraints

Normally the inheritance of OCL constraints follows Liskov's substitution prin-
ciple which declares that every constraint of a constrained class must also be
checked for any subclass of the constraint class [WK04, p. 145] [BDL04, p.
21f.]. Postconditions and invariants can be strengthened during inheritance,
preconditions can be weakened.

Enforcing Liskov's substitution principle during code generation is a very
di�cult task because the code generator has to check for any precondition to
see if the precondition will be weakened by another constraint de�ned over any
sub-class. Thus the new code generator will not follow Liskov's substitution
principle. But the developed wizard will provide an option which will let the
user decide whether or not invariants, pre- and postconditions shall be inherited.

The Reaction on Violated Constraints

As already mentioned, the new code generator will provide a violation macro
technique to enable the user to decide how the constraint code will react on

16 CHAPTER 4. REQUIREMENT ANALYSIS

violated constraints. This violation macro can be set generally for all constraints
or individually for any constraint by the user [Eis06, p. 45f]. The new code
generator will provide both possibilities in the code generation wizard.

4.2 Related Work

For all I know there is only one project which already tried to realize an aspect-
oriented realization of an OCL code generator. This project is called the OCL2J
approach. The OCL2J approach was developed at the Carleton University Ot-
tawa, Canada in 2004 [BDL04] [BDL05] [DBL06]. The work intensively inves-
tigated the Java code generator of the DOT and studied which advantages and
disadvantages would be gained by an OCL code generator which instrumen-
tation technique is based on aspect-oriented programming. Unfortunately no
source or byte code was available to test the OCL2J tool.

The tool uses the aspect-oriented programming language AspectJ and solves
many of the problems and tasks mentioned during the evaluation of Katrin
Eisenreich: Source and byte code weaving is possible using OCL2J, constrained
and constraint code can be developed independently [BDL04, p. 17f].

Like the old code generator of the DOT2, the OCL2J tool supports code
generation for invariants, pre- and postconditions. Let and body expressions,
enumerations, de�ned and derived values are not supported. The tool does not
use an OCL standard library for the OCL type representations in Java, but
tries to map as much types as possible directly to Java types. Primitive types
in OCL are separated into primitive and wrapper types in Java [BDL04, p. 18,
32�].

Special OCL operations and properties like @pre, allInstances() and ocl

IsNew() are supported [BDL04, p. 8, 29, 39�]. The code generator uses Java
re�ection to resolve information from the provided model source or byte code
[BDL04, p. 19f]. Invariants are checked after constructors and before and
after the execution of public methods of the constrained class [BDL04, p. 20].
Reactions on constraint violations are runtime exceptions or error messages
[BDL04, p. 50]. The tool was intensively tested using the royal and loyal model
developed by Warmer and Kleppe [WK04, p. 39�] [BDL04, p. 50�, 95f] which
can be found in appendix D.

All things considered the OCL2J approach presents a good basis for a code
generator implementation using aspect-oriented technologies for code instru-
mentation. The tool provides many solutions for tasks and problems which
have to be solved during this work. Interesting solutions for problems like the
OCL method allInstances() are provided. Thus, the tool was used as a cen-
tral background for this research.

Chapter 5

Design and Fragment

Generation

This chapter presents the architecture of the developed code generator. It de-
scribes which plug-ins of DOT4Eclipse are referred and which interfaces are
introduced. The ExpressionSwitch class which is used to iterate over the data
structure of the pivot model and its constraints is also presented. Finally, solu-
tions for the type mapping to Java and for the fragment code generation from
OCL constraints to Java are shown.

5.1 The Architecture

This section introduces brie�y the architecture of the new code generator. The
package structure and the class structure will be presented. The class Expres-
sionSwitch will be introduced.

5.1.1 The Package Structure

The Java code generator is realized as a new plug-in of DOT4Eclipse which
depends on di�erent other plug-ins of the toolkit. Like the OCL parser and
the OCL interpreter introduced in section 2.3, the code generator directly de-
pends on three di�erent plug-ins. These three plug-ins are the Pivot Model, the
Essential OCL plug-in and the Model Bus plug-in. Figure 5.1 illustrates these
dependencies.

5.1.2 The Class Structure

This section explains some classes and interfaces introduced for the Java code
generator.

Some Internal Classes

Figure 5.2 shows two di�erent interfaces which are internally used by the code
generator. The �rst interface ITransformedCode describes fragments of code
generated by the code generator. It provides methods to add or get the contained

17

18 CHAPTER 5. DESIGN AND FRAGMENT GENERATION

Meta Model

OCL2Java

Pivot Model Essential OCL Model Bus

Tools

Toolkit Basis

Back-End

(including repository)

exchangeable

Eclipse Plug-In Plug-In Dependency

Figure 5.1: The plug-in dependencies of Ocl2Java.

5.1. THE ARCHITECTURE 19

<<interface>>
ITransformedCode

containsCode():boolean()
getCode:String()
addCode(code : String)
getResultExp() : String
setResultExp(exp : String)

<<interface>>
ITransformedType

getTypeName() : String
setTypeName(name : String)
isGenericType() : boolean
getGenericType() : ITransformedType
setGenericType(type : ITransformedType)

TransformedCodeImpl

eqauls(Object : void) : boolean

code : String
resultExp : String

TransformedTypeImpl

TransformTypeImpl(String : void)
toString() : String

typeName : String
genericType : ITransformedType

<<realize>><<realize>>

Figure 5.2: The interfaces ITransformedCode and ITransformedType and their
realizations.

code and to set or get the result expression. The result expression describes a
variable or expression containing the result of the contained code. The contained
code for example could be a simple expression such as int result = 2;. Then,
the result expression would be the variable expression result, because this
variable contains the result of the whole code. The interface ITransformedCode
is realized by the class TransformedCodeImpl which additionally provides the
method equals(Object) to compare to di�erent pieces of transformed code.

The second interface called ITransformedType describes already transform-
ed types during code generation. It provides methods to set and get its type's
name and eventually to get or set a generic type as well. The realization
TransformedTypeImpl additionally provides the method toString() which re-
turns a string containing the name of the type (eventually including the name
of the generic type).

Both interfaces are used internally during code generation, but are further-
more visible for other plug-ins, because the interface ITransformedCode is also
used to set violation macros for the code generation.

Public Interfaces

The code generator plug-in de�nes two public interfaces which are visible for
other plug-ins. These two interfaces are shown in �gure 5.3. The �rst in-
terface called IOcl2Code represents code generators and de�nes three meth-
ods. The method getSettings() returns an instance of the second interface
IOcl2CodeSettings which provides a lot of methods to con�gure the associ-
ated IOcl2Code instance. The two other methods of IOcl2Code can be used to

20 CHAPTER 5. DESIGN AND FRAGMENT GENERATION

transform instrumentation code or fragment code for a given list of constraints.
Currently, only one class implements the interface IOcl2Code, which is the

Ocl2Java class realizing the Java code generator. More implementations are
possible to implement other code generators, for example a code generator
which generates C++ and AspectC++ code instead of Java code. The interface
could be used by an adaption of the declarative SQL code generator OCL22SQL
[Hei06] as well, but such a code generator would not need the provided method
transformInstrumentationCode().

<<interface>>
IOcl2Code

getSettings() : IOcl2CodeSettings
transformFragmentCode(constraints : List<Constraint>) : List<String>
transformInstrumentationCode(constraints : List<Constraint>) : List<String>

<<interface>>
IOcl2CodeSettings

isSaveCode() : boolean
setSaveCode(saveCode : boolean)
getSourceDirectory() : String
setSourceDirectory(directory : String)
getConstraintDirectory() : String
setConstraintDirectory(directory : String)
isGettersForDefinedAttributesEnabled() : boolean
setGettersForDefinedAttributesEnabled(enable : boolean)
isInheritanceDisabled(aConstraint : Constraint) : boolean
setDefaultInheritanceDisabled(disable : boolean)
setInheritanceDisabled(aConstraint : Constraint,disable : boolean)
getInvariantCheckMode(aConstraint : Constraint) : int
setDefaultInvariantCheckMode(mode : int)
setInvariantCheckMode(aConstraint : Constraint,mode : int)
getViolationMacro(aConstraint : Constraint) : ITransformedCode
setDefaultViolationMacro(macro : ITransformedCode)
setViolationMacro(aConstraint : Constraint,macro : ITransformedCode)

Figure 5.3: The interfaces IOcl2Code and IOcl2CodeSettings.

The Expression Switch Pattern

The code generator uses the class ExpressionSwitch which is provided by the
Essential OCL plug-in as shown in �gure 5.4. The class ExpressionSwitch

implements the Switch Class Pattern which can be generated for EMF models
and can be used to iterate over the abstract syntax model (ASM) of these models
[BSM+03, p. 207�]. �The switch class implements a switch-like callback mech-
anism that is used for dispatching based on a model object's type� [BSM+03,
p. 207]. The class ExpressionSwitch already generated by Matthias Bräuer
provides such a switch mechanism for Essential OCL models.

During the development of the OCL interpreter of DOT4Eclipse Ronny
Brandt compared the Switch Pattern with the commonly known Visitor Pattern

5.1. THE ARCHITECTURE 21

ExpressionSwitch

+doSwitch(EObject : void) : T
+defaultCase(EObject : void) : T
+caseBooleanLiteralExp(aBooleanLiteralExp : BooleanLiteralExp) : T
+caseCallExp(aCallExp : CallExp) : T
+caseCollectionItem(aCollectionItem : CollectionItem) : T
+caseCollectionLiteralExp(aCollectionLiteralExp : CollectionLiteralExp) : T
+caseCollectionLiteralPart(aCollectionLiteralPart : CollectionLiteralPart) : T
+caseCollectionRange(aCollectionRange : CollectionRange) : T
+caseEnumLiteralExp(anEnumLiteralExp : EnumLiteralExp) : T
+caseExpression(anExpression : Expression) : T
+caseExpressionInOcl(anExpressionInOcl : ExpressionInOcl) : T
+caseFeatureCallExp(aFeatureCallExp : FeatureCallExp) : T
+caseIfExp(anIfExp : IfExp) : T
+caseIntegerLiteralExp(anIntegerLiteralExp : IntegerLiteralExp) : T
+caseInvalidLiteralExp(anInvalidLiteralExp : InvalidLiteralExp) : T
+caseIterateExp(anIterateExp : IterateExp) : T
+caseIteratorExp(anIteratorExp : IteratorExp) : T
+caseLoopExp(aLoopExp : LoopExp) : T
+caseNamedElement(aNamedElement : NamedElement) : T
+caseOclExpression(anOclExpression : OclExpression) : T
+caseOperationCallExp(anOperationCallExp : OperationCallExp) : T
+casePrimitiveLiteralExp(aPrimitiveLiteralExp : PrimitiveLiteralExp) : T
+casePropertyCallExp(aPropertyCallExp : PropertyCallExp) : T
+caseRealLiteralExp(aRealLiteralExp : RealLiteralExp) : T
+caseStringLiteralExp(aStringLiteralExp : StringLiteralExp) : T
+caseTupleLiteralExp(aTupleLiteralExp : TupleLiteralExp) : T
+caseTupleLiteralPart(aTupleLiteralPart : TupleLiteralPart) : T
+caseTypedElement(aTypedElement : TypedElement) : T
+caseTypeLiteralExp(aTypeLiteralExp : TypeLiteralExp) : T
+caseUndefinedLiteralExp(anUndefinedLiteralExp : UndefinedLiteralExp) : T
+caseUnlimitedNaturalExp(anUnlimitedNaturalExp : UnlimitedNaturalExp) : T
+caseVariable(aVariable : Variable) : T
+caseVariableExp(aVariableExp : VariableExp) : T

T

Figure 5.4: The class ExpressionSwitch.

22 CHAPTER 5. DESIGN AND FRAGMENT GENERATION

[GHJV95, p. 331�] and pointed out that the Switch Pattern provides a good
solution to iterate over an ASM of an Essential OCL model [Bra07, p. 25�].
The key bene�t of the Switch Pattern is the fact that only one class in the class
structure has to be adapted if the meta model has been changed. The class
which has to be adapted is the switch class itself.

The same criteria which lead Ronny Brandt to use the SwitchPattern for
the implementation of his OCL interpreter were used to decide that the Switch-
Pattern would provide a good solution for the iteration over the Essential OCL
models to generate Java code as well.

The mechanism of the SwitchPattern is very simple. In DOT4Eclipse the
class ExpressionSwitch provides the method doSwith(EObject) which can be
called to iterate over Essential OCL models. The doSwitch(EObject) method
checks, which type of EObject was given as parameter �rst and then calls the
depending case() method. "[... E]ach case walks up the inheritance hierarchy
from the actual type of the object to EObject, calling out to a speci�c case()
handler method for each class. It stops when one of these methods return a
non-null value, which doSwitch() then returns" [BSM+03, p. 208].

The advantage of this pattern is the fact that the developer does not have to
think about the tree structure of his ASM. He only has to implement all methods
of the SwitchPattern which handle cases of model elements that are concrete
and not abstract. For example the developer has to implement the methods
caseIntegerLiteralExp() and caseStringLiteralExp() but not the method
caseLiteralExp().

The class ExpressionSwitch is an abstract class which can be parameterized
with a type that represents the result type of all case() methods. In the
depending case() methods the developer implements the code which will be
executed when such an element has been reached during iteration. During code
execution the doSwitch(EObject) can be called recursively to react on sub
elements of the currently handled element of the ASM. The Java code generator
parameterizes the pattern with the type ITransformCode. Thus, any case()

method returns a piece of transformed code.
The class ExpressionSwitch provides the central iteration mechanism of the

new code generator. The case() methods contain the code which generates the
corresponding Java code to the given Essential OCL expressions. The case()

methods use StringTemplates, parameterize them and use them to generate the
Java code.

The Ocl2Java Class

Figure 5.5 shows the implementation of the interface IOcl2Code called Ocl2Java
which represents the central class of the developed code generator (Please note
that not all methods of the classes Ocl2Code and ExpressionSwitch are shown
in the diagram). The code generator extends the class ExpressionSwitch to
iterate over the constraints and their expressions to generate code.

To generate code fragments the method transformFragmentCode(List<

Constraint>) is called which internally calls the private method transform-

FragmentCode(Constraint) for any constraint of the given list. This method
invokes the method doSwitch(Eobject) for the expression of the given con-
straint. doSwitch(Eobject) is the method which starts the iteration provided
by the ExpressionsSwitch class.

5.2. TYPE MAPPING 23

For any type of expression the depending case() method is implemented
to generate the code for the expression. In addition to methods to handle
di�erent expressions, the class Ocl2Java also provides methods to transform
types of the pivot model into Java types. The class Ocl2Java possesses an
environment called IOcl2CodeEnvironment which provides methods to generate
variable names or to store some values during code generation such as referred
attributes or variables on which the special OCL operation @pre is invoked.

<<interface>>
IOcl2Code

+getSettings() : IOcl2CodeSettings
+transformFragmentCode(constraints : List<Constraint>) : List<String>
+transformInstrumentationCode(constraints : List<Constraint>) : List<String>

Ocl2Java

-init()
-transformFragmentCode(Constraint : void) : ITransformedCode
-transformInstrumentationCode(aConstraint : Constraint) : String
+caseBooleanLiteralExp(aBooleanLiteralExp : BooleanLiteralExp) : ITransformedCode
+caseCollectionLiteralExp(aCollectionLiteralExp : CollectionLiteralExp) : ITransformedCode
...
-transformAnyType(anAnyType : AnyType) : ITransformedType
-transformCollectionType(aCollectionType : CollectionType) : ITransformedType
...

-mySettings : IOcl2CodeSettings

<<interface>>
IOcl2CodeEnvironment

ExpressionSwitch

+caseBooleanLiteralExp(aBooleanLiteralExp : BooleanLiteralExp) : T
+caseCollectionLiteralExp(aCollectionLiteralExp : CollectionLiteralExp) : T
...

<<realize>>

T

Figure 5.5: The code generator Ocl2Java.

5.2 Type Mapping

As already mentioned in section 4.1.1, the new code generator does not use
a standard library to transform OCL types into Java types. The types are
transformed into already existing Java types instead (if this is possible). The
type mapping is realized in the code generator via simple StringTemplates which
results in the name of the mapped type in Java. The type mapping from OCL
to Java types is explained brie�y in the following. An overview of all mapped
OCL types can be found in appendix A.

5.2.1 Primitive Types

OCL contains the primitive types Integer, Real, UnlimitedNatural, Boolean
and String. Warmer and Kleppe propose to map these types to the primitive
types in Java as well [WK04, p. 97]. Integer becomes int, Real becomes
float and Boolean becomes boolean.

24 CHAPTER 5. DESIGN AND FRAGMENT GENERATION

Type in OCL Type in Java
Boolean java.lang.Boolean

Integer java.lang.Integer

Real java.lang.Float

String java.lang.String

UnlimitedNatural java.lang.Long

Table 5.1: Type mapping from OCL to Java for primitive types.

This solution causes trouble because primitive Types in Java can not be used
as generic types, for example in the declaration of collections. The automatic
substitution from primitive to wrapper types in the Java compiler (called au-
toboxing [Ull06, Section 8.2.5]) solves this problem in many situations, but the
initialization of collections with primitive generic types is not not possible in
Java.

Furthermore, primitive types also cause problems when all their instances
for the special OCL operations allInstances() and oclIsNew() shall be col-
lected. In addition to that the instanceof operator in Java needed for the
OCL operations oclIsKindOf() and oclIsTypeOf() is not available for prim-
itive Java types. Finally, new de�ned methods returning a primitive type can
not be implemented by default using the Java statement return null;

The OCL2J approach (introduced brie�y in section 4.2) solves this problem
by standardly mapping to primitive types and converting these primitive types
into wrapper types in any situation were this is compulsory [BDL04, p. 32�].
The newly developed code generator avoids this technique and thus supports
the possibility to exchange any type of the type mapping (e. g. if the code
generator will be adapted to another target language). It only uses wrapper
types in Java. Table 5.1 shows all primitive OCL types and their corresponding
wrapper types in Java.

This solution solves the initialization problem for generic collections but
causes some new problems as well: the implementation of already de�ned
methods in the model using body constraints could be error-prone if the origi-
nally de�ned method returns a primitive type in Java. For example a method
getAge():int could cause an error if the generated code tries to return an
Integer instance. The same problem could occur if the generated code tries
to address join points of a Java method by using a wrapper type instead of a
primitive type as return type. The second problem is solved by using wild cards
in the pointcut declaration but the �rst problem is ignored by the developed
code generator and should be addressed and �nally solved in future works.

5.2.2 Enumerations

OCL provides the possibility to use Enumeration types. Enumeration types
exist in Java as well. Thus, enumerations are mapped to the corresponding
Java type as shown in table 5.2.

5.2. TYPE MAPPING 25

Type in OCL Type in Java
Enumeration<T> java.lang.Enum<T>

Table 5.2: Type mapping from OCL to Java for enumerations.

Type in OCL Type in Java
TupleType(<attribute1>:

<type1>, ...)

java.util.HashMap<String,

Object>

Table 5.3: Type mapping from OCL to Java for tuples.

5.2.3 Tuples

OCL provides a Tuple type with which the user can de�ne a collection of dif-
ferent values (possibly of di�erent types) identi�ed by an attribute name inside
the tuple [OMG06, p. 35]. Java does not support tuple types. Thus, tuples
are transformed into a map containing the name of the attributes as a key
of the Java type java.lang.String and a value of any type (sub-classes of
java.lang.Object) such as proposed in [WK04, p. 100]. The mapping for
tuple types is shown in table 5.3.

A map can be used for tuples in Java because OCL does not de�ne any
operations over tuples which are not provided be the java.util.Map interface.
The access to tuple attributes can be simply transformed into a value call like
aTuple.get("attributeName").

5.2.4 Collection Types

OCL de�nes four di�erent collection types: Bag, OrderedSet, Sequence, and
Set [OMG06, p. 144�]. Some of them such as Bag can be directly mapped
to Java classes or interfaces like java.util.List. But the OCL speci�cation
de�nes many operations over its collection types which are not present for col-
lection types in Java. Thus, the four collection types are the only types for
which the code generator introduces new Java types.

A new plug-in of the DOT4Eclipse called tudresden.ocl20.pivot.ocl2-

java.types has been created. This plug-in contains implementations for the
four collection types and a general abstract collection class. Any code generated
by the new code generator has to import these type package in order to be able to
work with collections de�ned in OCL. The type mapping for the OCL collections
is shown in table 5.4.

5.2.5 Special OCL types

OCL introduces some other special types called OclAny, OclType, OclUnde-
fined, OclVoid and OclInvalid. OclAny can be mapped to java.lang.Object
and OclType to java.lang.Class. OclUndefined and OclVoid are not mapped
to any speci�c type in Java, because unde�ned literal expressions are mapped
to null in Java and void literal expressions are mapped to an empty piece of
code in Java because they are used as generic type of collections whose generic
type has not been set. The type OclInvalid has not to be mapped because
OclInvalid is the result of all invalid constraints which are already blocked by

26 CHAPTER 5. DESIGN AND FRAGMENT GENERATION

Type in OCL Type in Java
Bag<T> tudresden.ocl20.pivot.

ocl2java.types.OclBag<T>

OrderedSet<T> tudresden.ocl20.pivot.

ocl2java.types.OclOrderedSet<T>

Sequence<T> tudresden.ocl20.pivot.

ocl2java.types.OclSequence<T>

Set<T> tudresden.ocl20.pivot.

ocl2java.types.OclSet<T>

Table 5.4: Type mapping from OCL to Java for collections.

Type in OCL Type in Java
OclAny java.lang.Object

OclInvalid no mapping provided
OclType java.lang.Class

OclUndefined no type just 'null'
OclVoid an empty piece of code

Table 5.5: Type mapping from OCL to Java for special OCL types.

the parser before code can be generated for them. The type mapping for the
special OCL types is presented in table 5.5.

The special type OclAny supports some operations such as allInstances(),
oclIsNew() or OclAsType(). Some of these methods are directly transformed
into corresponding operations or operators in Java such as instanceof ex-
plained in section 5.3.2. Others are realized during fragment instrumentation
and are explained in sections 6.5 and 6.7.

5.3 Fragment Generation

This section explains brie�y how the literals of the given OCL expressions are
transformed into Java code. For all code transformations, the code generator
uses StringTemplates to generate the Java code inside the corresponding case()
method of the ExpressionSwitch class. The StringTemplates used can be found
in appendix C.

This section will not explain all di�erent expressions possible in OCL. The
transformation for primitive types, enumerations, if expressions and some spe-
cial OCL types such as OclAny are not described. Some details about the
transformation of the type expressions can be found in section 5.2.

The transformation of property call expressions, operation call expressions,
collection literal expressions and iterator expressions will be explained in the
following.

5.3.1 Property Call Expressions

�A PropertyCallExpression is a reference to an Attribute of a Classi�er de�ned
in a[n] UML model. It evaluates to the value of the attribute� [OMG06, p. 44].
Generally, a property call expression can simply be transformed from OCL to

5.3. FRAGMENT GENERATION 27� �
1 Tuple {name: String = ’John’, age: Integer = 10}.name� �

Listing 5.1: OCL code for a property call expression on a tuple type.� �
1 java.util.HashMap<String, Object> tuple1;
2 tuple1 = new java.util.HashMap<String, Object>();
3

4 tuple1.put(name, "John");
5 tuple1.put(age, new Integer(10));
6

7 tuple1.get("name");� �
Listing 5.2: Generated Java code for a property call expression on a tuple type.

Java. For example the OCL expression Person.age will be transformed to the
Java code Person.age which is exactly the same.

An interesting case occurs, when a property call expression will be trans-
formed which references to a tuple attribute which is not implemented as a
tuple type in Java (see also section 5.2.3). For example the OCL expression
shown in listing 5.1 leads to such a property call expression. The transformed
Java code for this expression is presented in listing 5.2. As shown in the listing,
the general property call has to be transformed into a method call on the map
which represents the tuple in Java.

5.3.2 Operation Call Expressions

�An OperationCallExp refers to an operation de�ned in a Classi�er. The ex-
pression may contain a list of argument expressions if the operation is de-
�ned to have parameters� [OMG06, p. 45]. Generally, such an operation
call expression can be simply transformed from OCL to Java. The OCL ex-
pression Person.getAge() for example will be transformed to the Java code
Person.getAge() which is exactly the same expression. All operation map-
pings from OCL to Java used by the new code generator are listed in appendix
B. In the following some special cases are discussed brie�y.

Operations Delegated to other Types

Some operations which are provided in OCL must be referenced to other types
or utility classes in Java. An example is the operation abs() which is available
for numeric types in OCL. In Java this operation is delegated to the utility class
java.lang.Math (see listing 5.3).

Equality on Primitive Types

The decision to transform all primitive OCL types to wrapper type in Java (see
section 5.2.1), causes a problem invoking the OCL operation = on primitive
types in Java. Primitive types in Java are normally compared using the oper-
ator ==. But using the operator == does not work on wrapper types in Java.
new Integer(0) == new Integer(0) results in false because the operator ==
checks if both Integers are the same instance. The operation Object.equals()

28 CHAPTER 5. DESIGN AND FRAGMENT GENERATION

� �
1 // Java code for aNumeric.abs().
2 result = java.lang.Math.abs(aNumeric);� �

Listing 5.3: Java code for the OCL operation abs().� �
1 // Java code for aCollection−>size() = 1.
2 ((Object) aCollection.size()).equals(new Integer(1));� �

Listing 5.4: Java code for the equality operation on primitive types.� �
1 // Java code for anInteger / anotherInteger.
2 result = ((Float) anInteger / (Float) anotherInteger);� �

Listing 5.5: Java code for the division of two Integers.� �
1 // Java code for sum on Collection<GenericType>.
2 GenericType result;
3 result = new GenericType(0);
4

5 /∗ Compute the result of a sum() operation. ∗/
6 for (GenericType anElement : aCollection) {
7 result += anElement;
8 }� �

Listing 5.6: Java code for the OCL operation sum().� �
1 // Java code for anObject.allInstances().
2 result = (new OclSet<aType>((java.util.Set<aType>)
3 this.allInstances.get(anObject.getClass()
4 .getCanonicalName()).keySet()));� �

Listing 5.7: Java code for the OCL operation allInstances().� �
1 // Java code for anObject.oclAsType().
2 result = ((aType) anObject);
3

4 // Java code for anObject.oclIsKindOf().
5 result = (anObject instanceof aType);
6

7 // Java code for anObject.oclIsOfType().
8 result = (anObject.getClass().getCanonicalName()
9 .equals("Cannonical name of aType");� �
Listing 5.8: Java solutions for oclAsType(), oclIsKindOf() and oclIsOfType().

5.3. FRAGMENT GENERATION 29

must be used instead to compare wrapper types. This operation works but some
operations such as Collection.size() result in a primitive type in Java such
as int. Invoking equals() on a primitive type in Java is not possible. Thus the
code generator generates a special code for the = operation on primitive OCL
types. The left hand expression of such an expression in OCL is cast to Object

in Java and then the operation equals() is invoked. Such a solution works in
Java because of the autoboxing mechanism [Ull06, Section 8.2.5]. The presented
solution is shown in listing 5.4. The same solution is used for the OCL operation
<>.

Division on Integer Types

Another special case for the Integer type in OCL is the division operand. In
OCL the result of a regular division on Integer types is a value of the type
Real. In Java, the normal division results in an Integer type. Thus, a cast
must be performed before the given integer literal expression is divided (see
listing 5.5).

Sum on Collection Types

A special problem occurs when the OCL operation sum() shall be implemented.
The sum() operation is provided for all collection types and results in the sum
of all elements contained in the collection. Such a result can only be computed
if the elements of the collection are of numeric types [OMG06, p. 146]. Such
an operation normally could be implemented in the new implemented collection
types.

However, such an implementation of a collection which has a generic element
type can not be realized in Java. The problem occurs when the collection does
not contain any element. The operation sum() has to decide whether it has to
return null or 0 depending on the question whether or not the collection has
a numeric generic type. But the generic type of a collection is not bound when
the collection is initialized but when the collection gets its �rst element. Thus
this decision can not be done for an empty collection. Runtime errors can occur
for example when a collection with the generic type String does not contain
any element. The operation sum() which results it the collection's generic type
(which is String) returns an Integer because the collection does not know that
its generic type is not a numeric type.

Thus the operation sum() is not implemented in the Java collection classes
but is generated during code generation as a for() loop. Listing 5.6 shows such
an implementation in Java. The advantage of this solution is that the OCL
parser always knows the result type of the sum() operation and thus the code
can be generated for empty collections also.

Operations on the Type OclAny

The special OCL type OclAny supports some special operations, which are avail-
able for all types in OCL. The operation allInstances() returns all instances
of the type the operation has been invoked on. Such an operation is not avail-
able in Java and can only be implemented by using advanced programming
techniques such as aspect-oriented programming. Section 6.7 explains how this

30 CHAPTER 5. DESIGN AND FRAGMENT GENERATION� �
1 Sequence { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }
2

3 Sequence { 1..10 }� �
Listing 5.9: Two ways to initialize a collection in OCL.� �

1 OclSequence<Integer> collection;
2 collection = new OclSequence<Integer>();
3

4 /∗ TODO: Auto−generated initialization does
5 only work for numeric values. ∗/
6 for (Integer index = new Integer(1);
7 index <= new Integer(10); index++) {
8 collection.add(index1);
9 }� �

Listing 5.10: Java code for a collection with range initialization.

method is implemented during fragment instrumentation. Listing 5.7 shows a
call on the map which realizes the storage of all instances in the generated code
(see section 5.2.4).

Other operations of oclAny() are oclAsType(), oclIsKindOf() and oclIs-
TypeOf(). Their transformations are shown in listing 5.8.

5.3.3 Collection Literal Expressions

The transformation of collection literal expressions from OCL to Java is very
simple. The only di�erence between OCL and Java is the initialization of the
collections. In OCL two di�erent possibilities are provided to initialize collec-
tions [OMG06, p. 177]:

1. Any item can be described by its own CollectionLiteralPart,

2. A set of items can be described by a CollectionLiteralRange.

Both possibilities are shown in listing 5.9. If a collection is initialized in
OCL using a range expression the resulting Java code must contain a loop
which iterates over the given range and adds an element to the collection for
every element in the range. Such a Java implementation is shown in listing 5.10.

Please note that this construct only works for a collection which has an
Integer element type. The OCL parser of DOT4Eclipse only accepts range
expressions if they are de�ned over Integer values. Thus, the code generator
does not have to consider the collection's element type.

5.3.4 Iterator Expressions

OCL de�nes a lot of operations over collections, which compute a result by
iterating over all elements of the collections [OMG06, p. 25]. Such operations
are called iterators and are represented by iterator expressions in the OCL meta
model. All these iterator operations can be implemented in Java by de�ning
loops over the collection. Such a Java implementation is shown in listing 5.11

5.3. FRAGMENT GENERATION 31� �
1 Boolean result;
2 result = true;
3

4 /∗ Iterator: aCollection−>forAll(Object anElement :
aBooleanExpression) ∗/

5 for (Object anElement : aCollection) {
6

7 if (!aBooleanExpression) {
8 result = false;
9 break;

10 }
11 // no else
12 }� �

Listing 5.11: Java code for the iterator forAll.

for the special iterator forAll which evaluates a given Boolean expression for
all elements of the collection [OMG06, p. 27].

All other iterators use similar Java code to iterate over their collection and
to compute their result. In OCL, however, iterators can also be used to iterate
over more than one element: an iterator can iterate over the same collection
twice to compare pairs of elements in a collection. Java does not support loops
over more than one collection item. But loops can be nested in Java. Warmer
and Kleppe pointed out that any iterator expression which uses more than one
iterator variable can be transformed into a nested iterator [WK04, p. 179].
Thus, the transformed Java code for an iterator with more than one iterator
variable results in nested for() loops in Java.

Another special case is the OCL iterator sortedBy, which iterates over a
given collection and compares its elements by a given comparator expression.
Let us assume we have a class ClassX with an attribute attributeY and want
to iterate through a collection of ClassXs by comparing their attributeYs.
Listing 5.12 shows such an OCL expression.

Java provides the utility class Comparator do de�ne a compare strategy over
a given class. Using Comparators, the operation java.util.Collections.sort
(aCollection, aComparator) can be used to sort collections. The code gener-
ator uses these utility classes in the generated Java code for sortedBy iterators
(see listing 5.13).

32 CHAPTER 5. DESIGN AND FRAGMENT GENERATION

� �
1 inv: aCollection−>sortedBy(attributeY)� �

Listing 5.12: A 'sortedBy' iterator in OCL.� �
1 ClassX result;
2 java.util.Comparator<ClassX> comparator;
3

4 comparator = new java.util.Comparator<ClassX>() {
5

6 /∗∗ Method which compares two
7 elements of the collection. ∗/
8 public int compare(ClassX elem1, ClassX elem2) {
9

10 int compareResult;
11 compareResult = 0;
12

13 if (elem1.attributeY < elem2.attributeY) {
14 compareResult = −1;
15 }
16

17 else if (elem1.attributeY > elem2.attributeY) {
18 compareResult = 1;
19 }
20

21 return compareResult;
22 }
23 };
24

25 result = java.util.Collections
26 .sort(aCollection, comparator);� �

Listing 5.13: Java code for a 'sortedBy' iterator.

Chapter 6

Fragment Instrumentation

For the instrumentation of the transformed code fragments into the Java classes
I decided to use the aspect-oriented language AspectJ. A short introduction in
aspect-oriented programming can be found in section 3.1.

This chapter will present the instrumentation of all constraint types realized
by the developed code generator. The solutions for some special OCL opera-
tions and attributes which can not be realized without code instrumentation
are also presented. All shown examples use the royal and loyal example and its
constraints which were published in [WK04]. The royal and loyal example can
be found in appendix D.

6.1 Initial and Derived Values

Initial and derived values of attributes and association ends can be de�ned using
the OCL expressions init and derive [OMG06, p. 9].

6.1.1 Initial Values with Init

By using the OCL expression init it is possible to de�ne initial values for
attributes which have already been de�ned by another OCL expression or an
UML model [OMG06, p. 164]. Listing 6.1 shows a simple init expression which
de�nes the initial value of the attribute points for the class LoyaltyAccount
[WK04, p. 43]. Thus, the attribute points will be initialized with 0 during the
creation of any LoyaltyAccount instance.

The easiest solution to instrument this init expression is to de�ne an aspect
containing a pointcut which describes all constructors of the class Loyalty-

Account and an advice which is executed after the de�ned pointcut and which
initializes the attribute points. Such an aspect is described in listing 6.2.

Please note that the given aspect uses the modi�er privileged to enable
the access to eventually referenced attributes of the class LoyaltyAccount which
are not visible (attributes de�ned using the modi�ers private or protected).

The presented solution also works with inheritance relationships. Eventually
other init expressions for a sub-class of LoyaltyAccount can override the init
expression of LoyaltyAccount because their aspect code is executed after the
execution of the aspect code for the class LoyaltyAccount.

33

34 CHAPTER 6. FRAGMENT INSTRUMENTATION� �
1 context LoyaltyAccount::points
2 init: 0� �

Listing 6.1: A simple init constraint.� �
1 public privileged aspect InitAspect {
2

3 protected pointcut
4 allConstructors(LoyaltyAccount aClass):
5 execution(public LoyaltyAccount.new())
6 && this(aClass);
7

8 after(LoyaltyAccount aClass) :
9 allConstructors(aClass) {

10 aClass.points = 0;
11 }
12 }� �

Listing 6.2: An aspect instrumenting a simple init expression.

6.1.2 Derived Values with Derive

Using the OCL expression derive, derived values for attributes or association
ends can be de�ned. Derived values are derived from other attributes and/or
association ends of the constrained class [OMG06, p. 165]. Listing 6.3 shows a
simple derive expression which derives the attribute printedName of the class
CustomerCard from the association owner [WK04, p. 43].

My �rst idea to compute derived values was to de�ne setter pointcuts for all
attributes and association ends from which the derived value is derived using
the ApsectJ expression set. However, this solution is error-prone. Attributes or
association ends can be implemented by collections for which the pointcut set
is only a�ected if the collection is rede�ned and not if any element is added or
removed from the collection.

I therefore decided to derive the value when the derived value is read using
the ApsectJ expression get. Listing 6.4 shows such an aspect for the con-
straint given in listing 6.3. The pointcut printedNameGetter(CustomerCard

aClass is a�ected at any time when the attribute printedName of the class
CustomerCard is read and the advice before(CustomerCard aClass) always
executes the code to derive the attribute before the printedName attribute is
read.

As the solution for init expressions, this solution also works with inheri-
tance. The solution could possibly be improved if the derived attribute would
only be computed if the value of the dependent attributes and associations ends
did really change.

6.2 Method Implementation with Body

Using the OCL expression body, the bodies of methods can be de�ned in OCL
[OMG06, p. 165]. Listing 6.5 shows a simple body expression which de�nes an
implementation of the method LoyaltyProgram.getName().

6.2. METHOD IMPLEMENTATION WITH BODY 35

� �
1 context CustomerCard::printedName
2 derive: owner.title.concat(’ ’).concat(owner.name)� �

Listing 6.3: A simple derive constraint.� �
1 public privileged aspect DeriveAspect {
2

3 protected pointcut
4 printedNameGetter(CustomerCard aClass) :
5 get(String printedName) && this(aClass);
6

7 before(CustomerCard aClass):
8 printedNameGetter(aClass) {
9 aClass.printedName =

10 aClass.owner.title.concat(" ")
11 .concat(aClass.owner.name);
12 }
13 }� �

Listing 6.4: An aspect instrumenting a simple derive expression.

� �
1 context LoyaltyProgram::getName() : String
2 body: self.name� �

Listing 6.5: A simple body constraint.� �
1 public privileged aspect BodyAspect {
2

3 protected pointcut
4 getNameCaller(LoyaltyProgram aClass):
5 call(String LoyaltyProgram.getName())
6 && target(aClass);
7

8 String around(LoyaltyProgram aClass):
9 getNameCaller(aClass) {

10 return aClass.name;
11 }
12 }� �

Listing 6.6: An aspect instrumenting a simple body expression.

36 CHAPTER 6. FRAGMENT INSTRUMENTATION

The instrumentation of a method body using AspectJ is very easy. Listing
6.6 shows such an instrumentation. The aspect de�nes a pointcut getName-

Caller(LoyaltyProgram aClass) which describes all calls of the method Lo-

yaltyProgram.getName() which will be implemented as well as an advice which
provides the code which will be executed to realize the methods using the advice
type around.

This solution does also work with inheritance. But the code assumes that the
method which will be implemented must have already been de�ned. Otherwise
the advice de�ned by the aspect will not be a�ected and executed and thus
the method will not be implemented. The solution for def constraints in the
following will show a solution which works for not yet de�ned methods.

6.3 Attribute and Method De�nition with Def

The OCL expression def can be used to de�ne new methods, attributes or
association ends for an already de�ned class [OMG06, p. 161]. Listing 6.7 shows
a simple def expression which de�nes the new attribute turnover for the class
LoyaltyAccount [WK04, p. 45]. The de�ned attribute has the type Real and
derives from the collection operation sum() of the association transactions.

The derivation of the attribute value does work exactly like the derivation
of attributes de�ned by init expressions which were mentioned above in 6.1.2.
The interesting question is how to de�ne the new attribute into the already
existing class such as LoyaltAccount?

Unfortunately AspectJ does not provide any mechanism to de�ne new at-
tributes or methods of an a�ected class. New attributes and methods can be
de�ned inside an aspect, but these attributes and methods are only visible for
advices of aspect �les. However, the new de�ned properties should also be
available for other Java classes as well.

The problem is solved by using the AspectJ keyword declare parents which
can be used to declare a new super class for a class. For example a given
class BaseClass which extends the class SuperClass can be extended by using
the AspectJ statement declare parents : BaseClass extends Extended-

Class;

The changed inheritance relationship between BaseClass and SuperClass

is shown in �gure 6.1. I call this solution the ExtendedClass Pattern.

Using the ExtendedClass Pattern, new attributes and methods can be de-
�ned in the new super class of the constrained class. For the constraint class
LoyaltyAccount in listing 6.7 we can de�ne a new super class ExtendedLoyal-
tyAccount containing the newly de�ned attribute turnover. An aspect using
this solution is shown in listing 6.8.

As mentioned above, the derivation of the attribute value uses the same
mechanism as the instrumentation of derive expressions 6.1.2.

Def expressions can also be used to de�ne new methods. The instrumen-
tation code for newly de�ned methods uses the ExtendedClass Pattern as well.
The derivation of the method's return value uses the same mechanisms as the
instrumentation of body expressions explained in section 6.2.

The instrumentation of def expressions does also work with inheritance.

6.3. ATTRIBUTE AND METHOD DEFINITION WITH DEF 37

� �
1 context LoyaltyAccount
2 def: turnover : Real = transactions.amount−>sum()� �

Listing 6.7: A simple constraint for an attribute de�nition.� �
1 public privileged aspect DefAspect {
2

3 declare parents : LoyaltyAccount
4 extends ExtendedLoyaltyAccount;
5

6 protected pointcut
7 turnoverGetter(LoyaltyAccount aClass) :
8 get(float turnover) && this(aClass);
9

10 before(LoyaltyAccount aClass):
11 turnoverGetter(aClass) {
12

13 OclBag<Float> result1;
14 result1 = new OclBag<Float>();
15

16 /∗ Iterate and collect elements. ∗/
17 for (Transaction anElement1 :
18 aClass.transactions) {
19 result1.add(anElement1.amount);
20 }
21

22 float result2;
23 result2 = 0;
24

25 /∗ Compute the result of sum(). ∗/
26 for (float anElement2 : result1) {
27 result2 += anElement2;
28 }
29

30 aClass.turnover = result2;
31 }
32 }� �
Listing 6.8: An aspect instrumenting a simple def expression for an attribute.

38 CHAPTER 6. FRAGMENT INSTRUMENTATION

SuperClass

BaseClass

SuperClass

BaseClass

ExtendedClass

getDefinedAttribute() : Object

defineAttribute : Object

Figure 6.1: The ExtendedClass pattern.

6.4 Preconditions

Preconditions de�ne conditions which must be true before the execution of a
method speci�ed in the context of a constraint [OMG06, p. 8].

Listing 6.9 shows a simple precondition over the method enroll(Customer

c) for the class LoyaltyProgramm [WK04, p. 62]. The precondition declares
that for any Customer c, who will be enrolled into a LoyaltyProgram, its name
does not have to be empty.

Listing 6.10 shows an instrumentation of this precondition using AspectJ.
The aspect de�nes a pointcut enrollCaller(..) which describes all calls of
the method enroll(Customer) which will be constrained and an advice which
provides the code which will be executed before the execution of the method
enroll(Customer) using the advice type before.

Normally, this solution also works with inheritance. However, the situation
gets more complicated when sub-classes of the constrained class are constrained
by own preconditions. According to Liskov's substitution principle, precondi-
tions can be weakened by preconditions de�ned in sub-classes [WK04, p. 145].
Implementing Liskov's substitution principle would be very complicate because
the code generator would have to check for every precondition to control if an-
other precondition de�ned for any sub-class of the constrained class would be
weaker.

Thus the new code generator ignores Liskov's substitution principle but pro-
vides the possibility to decide whether or not a precondition should be enforced
for all sub-classes of the constrained class as well. If the user decides not to
enforce the constraint for sub-classes, the generated code will be extended by
a check over the canonical name (a combination of all package names and the
class name according to the Java Language Speci�cation [GJSB05, p. 145f]) of
the constrained class (see listing 6.11).

6.4. PRECONDITIONS 39

� �
1 context LoyaltyProgram::enroll(c : Customer)
2 pre: c.name <> ’’� �

Listing 6.9: A simple precondition.� �
1 public privileged aspect PreAspect {
2

3 protected pointcut
4 enrollCaller(LoyaltyProgram aClass, Customer c):
5 call(Boolean LoyaltyProgram.enroll(Customer))
6 && target(aClass) && args(c);
7

8 before(LoyaltyProgram aClass, Customer c):
9 enrollCaller(aClass, c) {

10 if (!!c.name.equals("")) {
11 throw new RuntimeException(
12 "Error: Constraint was violated.");
13 }
14 // no else.
15 }
16 }� �

Listing 6.10: An aspect instrumenting a simple precondition.� �
1 before(LoyaltyProgram aClass, Customer c): enrollCaller(

aClass, c) {
2 if(aClass.getClass().getCanonicalName()
3 .equals("LoyaltyProgram") {
4

5 if (!!c.name.equals("")) {
6 throw new RuntimeException(
7 "Error: Constraint was violated.");
8 }
9 // no else.

10 }
11 // no else.
12 }� �
Listing 6.11: An advice for a precondition which is not enforced on subclasses.

40 CHAPTER 6. FRAGMENT INSTRUMENTATION

� �
1 context LoyaltyAccount::isEmpty():Boolean
2 post: result = (points = 0)� �

Listing 6.12: A simple postcondition.� �
1 public privileged aspect PostAspect {
2

3 protected pointcut isEmptyCaller(LoyaltyAccount
4 aClass):
5 call(Boolean LoyaltyAccount.isEmpty())
6 && target(aClass);
7

8 Boolean around(LoyaltyAccount aClass):
9 isEmptyCaller(aClass) {

10

11 Boolean result;
12 result = proceed(aClass);
13

14 if (!(result ==
15 (aClass.points == new Integer(0)))) {
16 throw new RuntimeException(
17 "Error: Constraint was violated.");
18 }
19 // no else.
20

21 return result;
22 }
23 }� �

Listing 6.13: An aspect instrumenting a simple postcondition.

6.5. POSTCONDITIONS 41

6.5 Postconditions

Postconditions de�ne conditions which must be true after the execution of a
method de�ned in the context of a constraint [OMG06, p. 8].

Listing 6.12 shows a simple expression which de�nes a postcondition over
the method isEmpty() for the class LoyaltyAccount [WK04, p. 53]. The
postcondition declares that the result of the method isEmpty() always has the
same result as the check if the points of the LoyaltyAccount are 0.

Listing 6.13 shows an instrumentation of this precondition using AspectJ.
The aspect de�nes a pointcut isEmptyCaller(..) which describes all calls of
the method isEmpty() and an advice which provides the code which will be
executed around the execution of the method using the advice type around.

At �rst, the result of the executed method isEmpty() is saved in a variable
result of the same type as the result of the method. This variable has the
same name as the special variable result in OCL which can be referred in
any postcondition and which always contains the result of the execution of the
method [OMG06, p. 15f]. Afterwards, the de�ned postcondition is veri�ed.
Finally, the result of method's execution is returned.

Similar to the solution for preconditions this solution does also work with
inheritance. Regarding Liskov's substitution principle, preconditions can be
strengthened by constraints de�ned over sub-classes of the constrained class
[WK04, p. 145]. Nevertheless, the code generator provides the possibility to
disable the enforcement of inheritance for postconditions as well. The technical
solution is the same as for preconditions explained in section 6.4.

Besides result OCL provides more special properties and operations which
can be used in postconditions to refer to values of the constrained class instance
before the constrained method's execution. This properties and operations can
be simply implemented using AspectJ and are discussed in the following.

6.5.1 The Special Property @pre

OCL de�nes the special property @pre which can be used to compare values
in postconditions with their values before the constrained method's execution
[OMG06, p. 23f]. Listing 6.14 shows such a postcondition. In the instrumenta-
tion aspects such values have to be stored if they are referred to the following
constraint.

Listing 6.15 shows an AspectJ solution for such a constraint. Before stor-
ing the result value and the method execution, variables are de�ned for all
@pre values which are referred in the following code. Then these variables are
initialized. The initialization depends on the type of the @pre value.

Primitive types and collections are simply copied using the Java constructor
new. Collections are simply copied as well because the code generator assumes
that the user wants to compare the length of the Collection using @pre or similar
checks like whether or not a speci�c element is contained into the collection.

However, the situation gets worse when the user uses @pre to refer to in-
stances of classes which are not primitive types or collections. The code gener-
ator can not simply copy these objects because it does not know whether or not
any attribute of the class instance has to be copied as well. This problem is sim-
ilar to commonly known problems using the provided Java operation clone()

[Ull06, Section 6.8.4].

42 CHAPTER 6. FRAGMENT INSTRUMENTATION� �
1 context LoyaltyProgram::enroll(c : Customer)
2 post: participants = participants@pre−>including(c)� �

Listing 6.14: A simple postcondition using @pre.� �
1 Boolean around(LoyaltyProgram aClass, Customer c):
2 enrollCaller(aClass, c) {
3

4 OclSet<Customer> atPreValue;
5 atPreValue1 = new OclSet<Customer>(aClass
6 .participants);
7

8 Boolean result;
9 result = proceed(aClass, c);

10

11 if (!aClass.participants.equals(atPreValue1
12 .including(c))) {
13 throw new RuntimeException(
14 "Error: Constraint was violated.");
15 }
16 // no else.
17

18 return result;
19 }� �

Listing 6.15: An aspect instrumenting a postcondition using @pre.

In this situation the code generator pushes the copy problem to the user.
The code generator generates a method createCopy() which is called during
the initialization of the @pre value which will be stored. This method has to
be implemented by the user to provide a correct initialization of the stored
value. The listings 6.16 and 6.17 show such an example in OCL and AspectJ.
The generated method createCopy() contains a default implementation which
returns the same object given as argument to the method. The method contains
a TODO comment which informs the user that he has to implement this method.
Such a comment will be highlighted in case tools such as Eclipse.

6.5.2 The Special Operation OclIsNew

OCL de�nes another special operation oclIsNew() for postconditions which
can be used to check if an instance was created during the constrained method's
execution or not [OMG06, p. 20f]. Listing 6.18 shows such a postcondition
[WK04, p. 184].

Listing 6.19 shows an AspectJ solution for such a constraint which was in-
vented during the development of the OCL2J approach [BDL04, p. 41�]. The
aspect creates a map which collects all instances of the types on which the op-
eration oclIsNew() is called during the postcondition. An advice observes all
constructors of these types and collects all instances of these types which are
newly created. During the check of the postcondition the map is cleared �rst,
then the constrained method is executed. After the execution of the method the

6.5. POSTCONDITIONS 43

� �
1 context LoyaltyProgram::enroll(c : Customer)
2 post: membership = membership@pre� �

Listing 6.16: A simple postcondition using @pre.� �
1 public privileged aspect PostAspect {
2

3 protected Membership createCopy(Membership anObject) {
4

5 Membership result;
6

7 /∗ TODO: Auto−generated code to copy values ∗/
8 result = anObject;
9

10 return result;
11 }
12

13 protected pointcut
14 enrollCaller(LoyaltyProgram aClass, Customer c):
15 call(Boolean LoyaltyProgram.enroll(Customer))
16 && target(aClass) && args(c);
17

18 Boolean around(LoyaltyProgram aClass, Customer c):
19 enrollCaller(aClass, c) {
20 Membership atPreValue1;
21 atPreValue1 = this.createCopy(aClass.membership);
22

23 Boolean result;
24 result = proceed(aClass, c);
25

26 if (!aClass.membership.equals(atPreValue1)) {
27 throw new RuntimeException(
28 "Error: Constraint was violated.");
29 }
30 // no else.
31

32 return result;
33 }
34 }� �

Listing 6.17: An aspect instrumenting a postcondition using @pre.

44 CHAPTER 6. FRAGMENT INSTRUMENTATION

� �
1 context Transaction::getProgram(): LoyaltyProgram
2 post: not result.oclIsNew()� �

Listing 6.18: A simple postcondition using oclIsNew().� �
1 public privileged aspect PostAspect {
2

3 protected java.util.Map<Object, Object> newInstances =
4 new java.util.WeakHashMap<Object, Object>();
5

6 after(LoyaltyProgram aClass) :
7 execution(LoyaltyProgram.new(..))
8 && this(aClass) {
9 this.newInstances.put(aClass, null);

10 }
11

12 protected pointcut
13 getProgramCaller(Transaction aClass):
14 call(LoyaltyProgram Transaction.getProgram())
15 && target(aClass);
16

17 LoyaltyProgram around(Transaction aClass):
18 getProgramCaller(aClass) {
19 this.newInstances.clear();
20

21 LoyaltyProgram result;
22 result = proceed(aClass);
23

24 if (!!this.newInstances.containsKey(result)) {
25 throw new RuntimeException(
26 "Error: Constraint was violated.");
27 }
28 // no else.
29

30 return result;
31 }
32 }� �

Listing 6.19: An aspect instrumenting a postcondition using oclIsNew().

6.6. INVARIANTS 45� �
1 context Customer
2 inv ofAge: age >= 18� �

Listing 6.20: A simple invariant.

map only contains all instances which were created during the execution and
the map can be used for calls on oclIsNew().

An important question is why the code generator uses a map to store in-
stances as keys and null values as value. The reason is that Java provides
the special map type WeakHashMap which provides a map which only weakly
store keys. Thus all instances which are collected in the key set of this map
are removed by the garbage collector if no other reference to the instance exists
anymore. This is very important to avoid long time collection of objects which
are not needed anymore by any other class or object.

6.6 Invariants

Invariants de�ne conditions which must be true at any time during the life cycle
of all instances of a class de�ned in the context of the constraint [OMG06, p. 7].
Listing 6.20 shows a simple invariant over the class Customer [WK04, p. 46].
This invariant declares that any Customer must have an age which is greater
than 18 or equal to 18 at any time.

As mentioned in section 4.1.3, the new code generator provides three di�erent
variants, when instrumented invariants will be veri�ed during runtime:

1. Invariants can be checked after construction of an object and after any
change of an attribute or association which is in scope of the invariant
condition (Strong Veri�cation).

2. Invariants can be checked after construction of an object and before or
after the execution of any public method of the constrained class (Weak
Veri�cation).

3. And �nally, invariants can only be checked if the user calls a special
method at runtime (Transactional Veri�cation).

The example shown in listing 6.20 is used to present the instrumentation
code for all three veri�cation variants. All of them use the same mechanism
such as the instrumentation of pre- and postconditions to enable or disable the
inheritance of the instrumented constraints.

6.6.1 Strong Veri�cation

Listing 6.21 shows the instrumentation of the shown invariant which is veri�ed
after construction of an object and after any change of an attribute or association
which is in scope of the invariant condition.

The aspect de�nes a pointcut allConstructors(Customer) which describes
all constructors of the constrained class Customer. For every attribute which
is in the scope of the constraint veri�cation another pointcut which observes

46 CHAPTER 6. FRAGMENT INSTRUMENTATION� �
1 public privileged aspect InvAspect {
2

3 protected pointcut allConstructors(Customer aClass):
4 execution(Customer.new(..)) && this(aClass);
5

6 protected pointcut ageSetter(Customer aClass) :
7 set(∗ Customer.age) && this(aClass);
8

9 protected pointcut allSetters(Customer aClass) :
10 ageSetter(aClass);
11

12 after(Customer aClass) : allConstructors(aClass)
13 || allSetters(aClass) {
14 if (!(aClass.age >= new Integer(18))) {
15 throw new RuntimeException(
16 "Error: Constraint was violated.");
17 }
18 // no else.
19 }
20 }� �

Listing 6.21: An aspect for an invariant with strong veri�cation.

changes of this attribute is de�ned. The example shows that these are only
the attribute age and its pointcut ageSetter(Customer). Another pointcut
called allSetters(Customer) collects the pointcuts for all a�ected attributes.
Additionally, an advice which is executed after all the de�ned pointcuts and
which checks the invariant is de�ned.

Tests show that this veri�cation principle causes some trouble at runtime if
an instrumented invariant observes more than one attribute for veri�cation.

Let us assume that a Customer has an attribute name and another attribute
surname. A de�ned invariant checks, whether or not the name and surname

are empty. During the construction of a Customer instance �rst the name is set.
After the setting of the name the aspect is executed and the invariant is checked.
The surname has not been set yet and the veri�cation fails. This problem has
not been solved yet and will be ignored in this work.

Another problem is the observation of nested properties and associations.
By now, the code generator only supports the pointcut generation for prop-
erties and associations which are directly linked to the constrained class. For
other properties and associations the pointcut generation is di�cult to realize
because the properties and associations are linked via other associations which
is di�cult to describe in AspectJ. Future works could investigate this problem
more speci�cally.

6.6.2 Weak Veri�cation

Listing 6.22 shows the instrumentation of the invariant presented in listing 6.20
which is veri�ed after construction of every Customer instance and before or
after the execution of any public method of any Customer instance.

The aspect de�nes a pointcut allConstructors(Customer) which describes

6.6. INVARIANTS 47� �
1 public privileged aspect InvAspect {
2

3 protected pointcut allConstructors(Customer aClass):
4 execution(Customer.new(..)) && this(aClass);
5

6 protected pointcut allPublicMethods(Customer aClass):
7 execution(public ∗ Customer.∗(..))
8 && this(aClass);
9

10 before(Customer aClass) : allPublicMethods(aClass) {
11 if (!(aClass.age >= new Integer(18))) {
12 throw new RuntimeException(
13 "Error: Constraint was violated.");
14 }
15 // no else.
16 }
17

18 after(Customer aClass) : allConstructors(aClass)
19 || allPublicMethods(aClass) {
20 if (!(aClass.age >= new Integer(18))) {
21 throw new RuntimeException(
22 "Error: Constraint was violated.");
23 }
24 // no else.
25 }
26

27 after(Customer aClass) throwing :
28 allPublicMethods(aClass) {
29 if (!(aClass.age >= new Integer(18))) {
30 throw new RuntimeException(
31 "Error: Constraint was violated.");
32 }
33 // no else.
34 }
35 }� �

Listing 6.22: An aspect for an invariant with weak veri�cation.

all constructors of the constrained class Customer and a pointcut allPublic-
Methods(Customer) for all public methods of the constrained class. Further-
more, three advices are de�ned. The �rst advice checks the invariant before
the execution of any public method. The second advice checks the invariant
after the execution of any constructor or public method. And the third advice
checks the invariant after the execution of any public method which fails by
throwing an exception. This is important because invariants must also be true
if an executed method fails [BDL05, p. 3].

Tests show that this veri�cation principle causes some troubles as well. Let
us assume that a very complex invariant is violated during runtime after the
execution of a public method and the ViolationMacro de�ned by the user throws
an exception. The throwing of the exception activates the instrumentation
aspect again, because the aspect also observes public methods which fail with

48 CHAPTER 6. FRAGMENT INSTRUMENTATION� �
1 public privileged aspect InvAspect {
2

3 declare parents : Customer extends ExtendedCustomer;
4

5 protected pointcut checkInvariantsCaller(
6 Customer aClass):
7 call(void Customer.checkInvariants())
8 && target(aClass);
9

10 after(Customer aClass) :
11 checkInvariantsCaller(aClass) {
12 if (!(aClass.age >= new Integer(18))) {
13 throw new RuntimeException(
14 "Error: Constraint was violated.");
15 }
16 // no else.
17 }
18 }� �

Listing 6.23: An aspect for an invariant with transactional veri�cation.

an exception. The complex invariant is veri�ed again and some maintenance
problems can occur.

This problem could only be avoided if the advice which reacts on thrown
exceptions checks the type of exception and ignores any exception which was
thrown by the ViolationMacro. This can only be realized by the user who de�nes
the ViolationMacro and will be ignored during this work.

6.6.3 Transactional Veri�cation

Listing 6.23 shows the instrumentation of the presented invariant which is veri-
�ed after the invokation of the newly de�ned method checkInvariants() only.

At �rst, the aspect de�nes a new super class for the constraint class Customer
using the ExtendedClass Pattern which was explained in section 6.3. The super
class ExtendedCustomer de�nes the method checkInvariants() which can be
called by the user to check the instrumented invariants. Then the aspect de�nes
a pointcut checkInvariantsCaller(Customer) which observes the method
checkInvariants() and an advice which is executed after any execution of
this method.

This veri�cation strategy would be very e�cient if the user wants to check
his de�ned invariants only at speci�c points during runtime.

6.7 The Special Operation AllInstances

OCL de�nes a special operation called allInstances() which returns a Set
containing all instances of a model type [OMG06, p. 139]. Listing 6.24 shows a
constraint which uses allInstances() [WK04, p. 184].

The presented solution to implement allInstances() is similar to the so-
lution presented for oclIsNew() in section 6.5.2. Listing 6.25 shows an AspectJ

6.7. THE SPECIAL OPERATION ALLINSTANCES 49

� �
1 context Transaction
2 inv: self.allInstances()−>size() > 0� �

Listing 6.24: A simple invariant using allInstances().� �
1 public privileged aspect InvAspect {
2

3 protected Map<String, Map> allInstances =
4 new HashMap<String, Map>();
5

6 after(Transaction aClass) :
7 execution(Transaction.new(..)) && this(aClass) {
8

9 Map<Transaction, Object> instanceMap;
10

11 instanceMap = (Map<Transaction, Object>)
12 this.allInstances.get(aClass.getClass()
13 .getCanonicalName());
14

15 if (instanceMap == null) {
16 instanceMap =
17 new WeakHashMap<Transaction, Object>();
18 }
19 // no else.
20

21 instanceMap.put(aClass, null);
22

23 this.allInstances.put(aClass.getClass()
24 .getCanonicalName(), instanceMap);
25 }
26

27 protected pointcut
28 allConstructors(Transaction aClass):
29 execution(Transaction.new(..)) && this(aClass);
30

31 after(Transaction aClass) : allConstructors(aClass) {
32 if (!((new OclSet<Transaction>((Set<Transaction>)
33 this.allInstances.get(aClass.getClass()
34 .getCanonicalName()).keySet())).size()
35 > new Integer(0))) {
36 throw new RuntimeException(
37 "Error: Constraint was violated.");
38 }
39 // no else.
40 }
41 }� �

Listing 6.25: An aspect instrumenting an invariant using allInstances().

50 CHAPTER 6. FRAGMENT INSTRUMENTATION

solution which was developed during the OCL2J approach [BDL04, p. 41�] for
the constraint of Listing 6.24. The aspect creates a map which collects maps
of all instances of all types on which the operation allInstances() is called
using the Canonical Name of the stored types as keys. An advice observes all
constructors of any of these types and collects all instances which were created.
Here again, the special Java class WeakHashMap is used to store the instances to
avoid problems during garbage collection.

The presented solution for allInstances() works in Java. However, Jos
Warmer and Anneke Kleppe already mentioned in [WK04] the use of the op-
eration allInstances() should be avoided. The use of allInstances() could
cause a lot of overhead if the operation is used on a type which possesses a lot
of instances during runtime.

Chapter 7

GUI Implementation and Test

This chapter illustrates brie�y, how the graphical user interface (GUI) of the
developed code generator has been implemented and how the code generator
has been tested.

7.1 The Code Generation Wizard

As mentioned in section 5.1, the code generator has been implemented as a set
of Eclipse plug-ins. The central class of the code generator is the class Ocl2Java
which was also introduced in section 5.1.

In addition to this implementation, a wizard which provides a GUI to select
a model and constraints for the code generation and a target directory for the
generated code has been developed. It also provides some settings like whether
or not inheritance will be enforced for instrumented pre-, postconditions and
invariants. The wizard was implemented using the GUI elements of the Eclipse
Plug-in Development Environment (PDE). A screenshot of the wizard is shown
in �gure 7.1.

Figure 7.2 shows a sequence diagram which illustrates how a user can use
the GUI to generate code. In the beginning, the GUI and the code generator are
created. After that, the user has to select a model and constraints for the code
generation before he can specify a target folder for the generated code and other
settings to con�gure the code generation and the features which were pointed
out by Katrin Eisenreich (see section 4.1.3). Afterwards the code generation
is started. The GUI delegates this request to the Ocl2Java instance. This
recursively creates the code.

7.2 Tests on the Implementation

The implemented Java code generator has been tested on two di�erent levels:
At the �rst level the fragment code generation was tested with many di�erence
(di�) tests, comparing the generated code with text �les containing the expected
code. At the second level the code instrumentation was tested using a jUnit
test suite which tested if the instrumented constraints were indeed enforced
and evaluated at runtime. Both test suites were implemented in a test plug-in

51

52 CHAPTER 7. GUI IMPLEMENTATION AND TEST

Figure 7.1: The code generation wizard of the Ocl2Java implementation.

7.2. TESTS ON THE IMPLEMENTATION 53

User GUI Ocl2Java

1 : <<create>>

2 : <<create>>

3 : select model

4: select constraints

7: select target directory

8: set advanced settings

9: create code

5: getSettings()

10: transformInstumentationCode()

6: IOcl2CodeSettings

21: OK

22: OK

11 : instrumentCodeFor...()

12 : transformCode()

13: doSwitch()

14: case...()

18 : saveTransformedCode()

20 : OK

15 : ITransformedCode

16 : ITransformedCode

17 : ITransformedCode

19 : OK

Figure 7.2: Code generation using the Ocl2Java GUI.

54 CHAPTER 7. GUI IMPLEMENTATION AND TEST

called tudresden.ocl20.pivot.ocl2java.test and will be explained in the
following.

7.2.1 Fragment Generation

To test the fragment generation of the implemented code generator, a jUnit
test suite which compares the generated fragment code for given constraints
with expected constraint code provided in text �les has been implemented. The
constraints used for the test suite are based on the royal and loyal example by
Warmer and Kleppe [WK04] which can be found in appendix D.

The test suite has been implemented in two classes called FragmentTest and
InstrumentationTest. The �rst class compares generated code fragments, the
second class compares generated instrumentation code. Both classes together
contain 138 test cases which provided good support during the code generator
development and can be used in the future for refactoring of the code generator
as well.

7.2.2 Fragment Instrumentation

To test the generated instrumentation code (or aspects), another test suite
which is based again on the royal and loyal example by Warmer and Kleppe
[WK04] (which can be found in appendix D) has been developed. The royal
and loyal example and its constraints have been implemented in a plug-in called
tudresden.ocl20.pivot.examples.royalandloyal. Another plug-in called
tudresden.ocl20.pivot.examples.royalandloyal.constraints contains a
test suite with 36 test cases which check the generated AspectJ code for 52
constraints (the constraints which have been instrumented for this test suite are
also available in appendix D). The implemented test suite provided good help to
test all the instrumentation variants of the di�erent kinds of OCL constraints.

7.2.3 Performance Test

To test the performance of the newly developed code generator, the generated
code has been compared with generated code of the Java code generator of the
DOT2. Both code generators were used to generate code for nine constraints
which were provided as an example with the code generator of the DOT2. For
this test only constraints which were accepted by the OCL parsers of both toolkit
versions without errors were selected.

A simple test suite which tests the instrumented constraints for both pack-
ages of generated code has been implemented. Although such a small test suite
can not be used as a stable case study, this simple test shows the improvement
of the new code generator. The results of the performance test are shown in
table 7.1.

This performance test shows that the new code generator improves both,
performance and code length. The old code generator created code with a total
length of 2251 lines of code (including the source code of the instrumented
model). The new Ocl2Java code generator created 303 lines of aspect code or
1244 lines of code including the source code of the instrumented model. That
is a decrease of 54%!

7.2. TESTS ON THE IMPLEMENTATION 55

DOT2 DOT4Eclipse
Lines of Code
(incl. model code)

2251 LOC 941 + 303 = 1244 LOC
(-54.7 %)

Avg. Test Suite
Execution Time

157 ms 64 ms
(-59.2 %)

Table 7.1: The results of the performance test with the code generators of
di�erent toolkit releases.

For the performance test, the developed test suite has been executed for
both instrumentation versions ten times and an average execution time has
been calculated. The old code generator caused an average execution time of
157 milliseconds, the new Ocl2Java code generator caused an average execution
time of 64 milliseconds, which denotes a decrease of 59%!

More case studies or benchmark could be developed to investigate the im-
provements more speci�cally. For example, the Benchmark for OCL Engine
Accuracy, Determinateness, and E�ciency developed at the University of Bre-
men [GKB08] could be used to examine the improvements in more detail.

56 CHAPTER 7. GUI IMPLEMENTATION AND TEST

Chapter 8

Evaluation and Outlook on

Future Works

This chapter will evaluate if the developed code generator ful�lls the tasks of
this work and if the analyzed requirements were realized. At �rst, the major
tasks of this work will be discussed brie�y. Afterwards the provided features of
the code generation will be evaluated. Finally, this chapter will point out some
tasks and features which were not realized and could be tasks of future works.

8.1 The Task of this Work

The tasks of this work have been the evaluation of the work of Katrin Eisenreich
regarding constraint code generation [Eis06] and the development of a Java
code generator for Dresden OCL2 for Eclipse. Aspect-oriented programming
techniques should be used to realize the code fragment instrumentation and the
OCL sub set supported by the Essential OCL meta model should be completely
implemented. The implementation should be tested and evaluated.

The result of this work is the implementation of a Java code generator which
can be released with the next release of DOT4Eclipse. The new code generator
is more e�cient than the code generator of the DOT2. The code is easier to
read, shorter and has been tested intensively.

8.2 The Provided Features

This section will evaluate if the developed code generator ful�lls the require-
ments pointed out by the minor thesis of Katrin Eisenreich [Eis06] which was
discussed in section 4.1. Here again, three feature groups will be separated: The
variation of fragment generation, the variation of fragment instrumentation and
the parameterization of the whole code generation.

8.2.1 Variation of the Fragment Generation

One feature point in the variation of fragment generation was the set of sup-
ported constraints. The code generator of the DOT2 and the OCL2J approach

57

58 CHAPTER 8. EVALUATION AND OUTLOOK ON FUTURE WORKS

only support pre-, postconditions and invariants. The newly developed code
generator supports pre-, postconditions and invariants as well, but also body
and let expressions, de�nitions and derived values. Only messages and states
are not supported because the Pivot Model and Essential OCL do not provide
any meta model elements for OCL messages and states.

Another feature are coding conventions. Like the old code generator, the
new one does not support special settings for coding conventions. However,
Eclipse supports features to format code very easily. Thus the users of the new
code generator could use Eclipse to adapt the generated code to their preferred
structure. Although the new code generator does not support features for code
formatting, the code is easier to read than the generated code of the DOT2 code
generator. Short experiments about e�ciency showed that the code seems to be
more e�cient and shorter than the code of the DOT2 code generator also (see
section 7.2.3).

The feature point of target languages is realized as in the old code generator.
Only the generation of Java code is supported. Future works could try to adapt
the code generator to other target languages like C++ or SQL.

The type representation of the new code generator is based on a type map-
ping such as in the OCL2J approach. The old code generator of the DOT2 used
a standard library. The resulted code of this design decision of the new code
generator seems to be both, easier to read and more e�cient (see section 7.2.3).

The last feature of the fragment generation feature group is the technique
used for fragment generation. The old code generator contained the code for
the fragment generation directly in its traversal mechanism. The new code
generator uses StringTemplates to generate code fragments. Thus the new code
generator is more �exible and more adaptable than the old code generator.

8.2.2 Variation of the Fragment Instrumentation

The features of this feature group are closely linked, because many of them
depend on the used instrumentation technology. The code generator of the
DOT2 used a parser which instrumented the instrumentation code directly
into the constrained Java classes. The newly developed code generator uses
aspect-oriented programming instead, such as the code generator of the OCL2J
approach. This decision improves e�ciency, reversibility of the code instru-
mentation, and supports easy and independent refactoring of constraint and
constrained code. Source code and byte code can both be instrumented which
was not possible using the old code generator. Also the support of special OCL
operations such as oclIsNew() and allInstances() can be provided.

Another feature in this group is the reaction on constraint violations. The
new code generator uses violation macros like the old code generator to con�gure
the violation reaction. The new code generator supports constraint speci�c
con�gurations of violation macros. Thus, some constraints can throw a runtime
exception and others can simply print a warning on the console. By now, the new
code generator does not provide possibilities to con�gure the violation macro
with parameters such as the name of the violated constraint or the constrained
class. Such parameterization could be approached in future works.

8.3. OUTLOOK ON FUTURE WORKS 59

8.2.3 Parameterization of the Code Generation

The last feature group describes all features provided to con�gure the code
generation. The new code generator provides good support to select constraints
from a model for which constraint code will be generated and instrumented.
Constraints can be selected manually or by group (for example all invariants).
Such possibilities were not supported by the old code generator of the DOT2.

Furthermore, the new code generator supports both general and constraint
speci�c settings for inheritances and invariant veri�cation which were both not
possible in the old code generator. For pre-, postconditions and invariants the
inheritance can be enabled or disabled. Future work could examine if better
mechanisms could be implemented to support Liskov's substitution principle
[WK04, p. 145].

To evaluate invariants during runtime, the new code generator provides three
di�erent strategies which were explained in section 4.1.3. The �rst two strategies
showed some minor problems during testing (see section 6.6). These problems
could be solved in future works.

8.3 Outlook on Future Works

During the evaluation of the provided features some disadvantages and de�cits
of the new code generator were pointed out. They could be solved in future
works. Some of these tasks are:

• The type mapping from primitive types in OCL to primitive and/or wrap-
per types in Java could be reconsidered. The actual strategy to map all
types to wrapper types causes some problems which were mentioned in
section 5.2.1.

• Other languages than Java could be implemented as target languages of
the code generation. A good test for the code generator architecture would
be an adaption to C++ for which aspect-oriented techniques are also
provided, for example by the language extension AspectC++ [Asp09a].
Declarative implementations would be interesting as well. For example the
tool Ocl22Sql of the DOT2 could be adapted to DOT4Eclipse by adapting
the developed code generator.

• The violation macro technique could be improved by providing the user
the possibility to use some variables in its own de�ned violation macros.
Such variables could contain the name of the violated constraint or the
name of the constrained class.

• The support of Liskov's substitution principle for constraints could be
evaluated and eventually implemented.

• The problems pointed out using the di�erent veri�cation strategies for
invariants could be solved or avoided (see section 6.6).

• The Benchmark for OCL Engine Accuracy, Determinateness, and E�-
ciency developed at the University of Bremen [GKB08] could be used to
examine the improvements of the new Java code generator in more detail.

60 CHAPTER 8. EVALUATION AND OUTLOOK ON FUTURE WORKS

Appendix A

Type Mapping

This appendix presents an overview over all OCL types and their mapped cor-
respondences in Java. The type mapping is explained in section 5.2.

Type in OCL Type in Java
Bag<T> tudresden.ocl20.pivot.

ocl2java.types.OclBag<T>

Boolean java.lang.Boolean

Enumeration java.lang.Enum<T>

Integer java.lang.Integer

Real java.lang.Float

OclAny java.lang.Object

OclInvalid no mapping provided
OclType java.lang.Class

OclUndefined no type just 'null'
OclVoid an empty piece of code
OrderedSet<T> tudresden.ocl20.pivot.

ocl2java.types.OclOrderedSet<T>

Sequence<T> tudresden.ocl20.pivot.

ocl2java.types.OclSequence<T>

Set<T> tudresden.ocl20.pivot.

ocl2java.types.OclSet<T>

String java.lang.String

TupleType(<attribute1>:

<type1>, ...)

java.util.HashMap<String,

Object>

UnlimitedNatural java.lang.Long

61

62 APPENDIX A. TYPE MAPPING

Appendix B

Operation Mapping

This appendix presents an overview over all OCL operations and their mapped
correspondences in Java. The operation mapping is explained in section 5.3.2.� �
1 java.lang.Math.abs(<numericLiteral>);� �

Listing B.1: <numericLiteral>.abs()� �
1 (new OclSet<objectType>((java.util.Set<objectType>)
2 this.allInstances.get(<object>.getClass()
3 .getCanonicalName()).keySet()));� �

Listing B.2: <object>.allInstances()� �
1 (<booleanLiteral1> && <booleanLiteral2>);� �

Listing B.3: <booleanLiteral1> and <booleanLiteral2>� �
1 <collectionLiteral>.append(<collectionItem>);� �

Listing B.4: <collectionLiteral>.append(<collectionItem>)� �
1 <collectionLiteral>.asBag();� �

Listing B.5: <collectionLiteral>.asBag()� �
1 <collectionLiteral>.asOrderedSet();� �

Listing B.6: <collectionLiteral>.asOrderedSet()� �
1 <collectionLiteral>.asSequence();� �

Listing B.7: <collectionLiteral>.asSequence()� �
1 <collectionLiteral>.asSet();� �

Listing B.8: <collectionLiteral>.asSet()

63

64 APPENDIX B. OPERATION MAPPING

� �
1 <collectionLiteral>.get(<integerLiteral>);� �

Listing B.9: <collectionLiteral>.at(<integerLiteral>)� �
1 <stringLiteral2>.concat(<stringLiteral2>);� �

Listing B.10: <stringLiteral2>.concat(<stringLiteral2>)� �
1 <collectionLiteral>.count(<collectionItem>);� �

Listing B.11: <collectionLiteral>.count(<collectionItem>)� �
1 (<integerLiteral1> / <integerLiteral2>);� �

Listing B.12: <integerLiteral1>.div(<integerLiteral2>)� �
1 ((Float) <integerLiteral1> / (Float) <integerLiteral2>);� �

Listing B.13: <integerLiteral1> / <integerLiteral2>� �
1 (<realLiteral1> / <realLiteral1>);� �

Listing B.14: <realLiteral1> / (<realLiteral2>)� �
1 <object1>.equals(<object2>);� �

Listing B.15: <object1> = <object2>� �
1 (((Object) <numericLiteral1>) == <numericLiteral2>);� �

Listing B.16: <numericLiteral1> = <numericLiteral2>� �
1 <collectionLiteral>.excludes(<collectionItem>);� �

Listing B.17: <collectionLiteral>.excludes(<collectionItem>)� �
1 <collectionLiteral1>.excludesAll(<collectionLiteral2>);� �

Listing B.18: <collectionLiteral1>.excludesAll(<collectionLiteral2>)� �
1 <collectionLiteral>.excluding(<collectionItem>);� �

Listing B.19: <collectionLiteral>.excluding(<collectionItem>)� �
1 <collectionLiteral>.first();� �

Listing B.20: <collectionLiteral>.�rst()� �
1 <collectionLiteral>.flatten();� �

Listing B.21: <collectionLiteral>.�atten()

65

� �
1 ((Integer) java.lang.Math.floor(<numericLiteral>));� �

Listing B.22: <numericLiteral>.�oor()� �
1 (<numericLiteral1> > <numericLiteral2>);� �

Listing B.23: <numericLiteral1> > <numericLiteral2>� �
1 (<numericLiteral1> >= <numericLiteral2>);� �

Listing B.24: <numericLiteral1> >= <numericLiteral2>� �
1 (!<booleanLiteral1> || <booleanLiteral2>);� �

Listing B.25: <booleanLiteral1>.implies(<booleanLiteral2>)� �
1 <collectionLiteral>.contains(<collectionItem>);� �

Listing B.26: <collectionLiteral>.includes(<collectionItem>)� �
1 <collectionLiteral1>.containsAll(<collectionLiteral2>);� �

Listing B.27: <collectionLiteral1>.includesAll(<collectionLiteral2>)� �
1 <collectionLiteral>.including(<collectionItem>);� �

Listing B.28: <collectionLiteral>.including(<collectionItem>)� �
1 <collectionLiteral>.indexOf(<collectionItem>);� �

Listing B.29: <collectionLiteral>.indexOf(<collectionItem>)� �
1 <collectionLit>.insertAt(<numericLit>, <collectionItem>);� �
Listing B.30: <collectionLit>.insertAt(<numericLit>, <collectionItem>)� �

1 <collectionLiteral1>.intersection(<collectionLiteral2>);� �
Listing B.31: <collectionLiteral1>.intersection(<collectionLiteral2>)� �

1 <collectionLiteral1>.isEmpty();� �
Listing B.32: <collectionLiteral1>.isEmpty()� �

1 <collectionLiteral1>.last();� �
Listing B.33: <collectionLiteral1>.last()� �

1 (<numericLiteral1> < <numericLiteral2>);� �
Listing B.34: <numericLiteral1> < <numericLiteral2>

66 APPENDIX B. OPERATION MAPPING

� �
1 (<numericLiteral1> <= <numericLiteral2>);� �

Listing B.35: <numericLiteral1> <= <numericLiteral2>� �
1 java.lang.Math.max(<numericLiteral1>, <numericLiteral2>);� �

Listing B.36: <numericLiteral1>.max(<numericLiteral2>)� �
1 java.lang.Math.min(<numericLiteral1>, <numericLiteral2>);� �

Listing B.37: <numericLiteral1>.min(<numericLiteral2>)� �
1 (<numericLiteral1> − <numericLiteral2>);� �

Listing B.38: <numericLiteral1> - <numericLiteral2>� �
1 <collectionLiteral1>.minus(<collectionLiteral2>);� �

Listing B.39: <collectionLiteral1> - <collectionLiteral2>� �
1 (<numericLiteral1> ∗ <numericLiteral2>);� �

Listing B.40: <numericLiteral1> * <numericLiteral2>� �
1 (<numericLiteral1> && <numericLiteral2>);� �

Listing B.41: <numericLiteral1>.mod(<numericLiteral2>)� �
1 −<numericLiteral1>;� �

Listing B.42: -<numericLiteral>� �
1 !<booleanLiteral>;� �

Listing B.43: not <booleanLiteral>� �
1 <collectionLiteral1>.notEmpty();� �

Listing B.44: <collectionLiteral1>.notEmpty()� �
1 !<object1>.equals(<object2>);� �

Listing B.45: <object1> <> <object2>� �
1 !((Object) <numericLiteral1>).equals(<numericLiteral2>);� �

Listing B.46: <numericLiteral1> <> <numericLiteral2>� �
1 ((<type>) <object>);� �

Listing B.47: <object>.oclAsType(<type>)

67

� �
1 (<object> == null);� �

Listing B.48: <object>.oclIsInvalid()� �
1 this.newInstances.containsKey(<object>);� �

Listing B.49: <object>.oclIsNew()� �
1 (<object> instanceof <type>);� �

Listing B.50: <object>.oclIsKindOf(<type>)� �
1 (<object>.getClass().getCanonicalName().equals("<type>");� �

Listing B.51: <object>.oclIsTypeOf(<type>)� �
1 (<object> == null);� �

Listing B.52: <object>.oclIsUnde�ned()� �
1 (<booleanLiteral1> || <booleanLiteral2>);� �

Listing B.53: <booleanLiteral1> or <booleanLiteral2>� �
1 (<numericLiteral1> + <numericLiteral2>);� �

Listing B.54: <numericLiteral1> + <numericLiteral2>� �
1 <collectionLiteral>.prepend(<collectionItem>);� �

Listing B.55: <collectionLiteral>.prepend(<collectionItem>)� �
1 <collectionLiteral1>.product(<collectionLiteral2>);� �

Listing B.56: <collectionLiteral1>.product(<collectionLiteral2>)� �
1 java.lang.Math.round(<numericLiteral>);� �

Listing B.57: <numericLiteral>.round()� �
1 <collectionLiteral>.size();� �

Listing B.58: <collectionLiteral>.size()� �
1 <stringLiteral>.length();� �

Listing B.59: <stringLiteral>.size()� �
1 <collectionLiteral>.subOrderedSet();� �

Listing B.60: <collectionLiteral>.subOrderedSet();

68 APPENDIX B. OPERATION MAPPING

� �
1 <collectionLiteral>.subSequence();� �

Listing B.61: <collectionLiteral>.subSequence();� �
1 <stringLit>.substring(<integerLit1> − 1, <integerLit2>);� �

Listing B.62: <stringLit>.substring(<integerLit1>, <integerLit2>)� �
1 <genericType> <resultVar>;
2 <resultVar> = new <genericType>(0);
3

4 /∗ Compute the result of a sum operation. ∗/
5 for (<genericType> <elementName> : <sourceExp>) {
6 <resultVar> += <elementName>;
7 }� �

Listing B.63: <collectionLiteral>.sum()� �
1 <setLiteral>.symmetricDifference(<collectionLiteral>);� �

Listing B.64: <setLiteral>.symmetricDi�erence(<collectionLiteral>)� �
1 Integer.parseInt(<numericLiteral>);� �

Listing B.65: <numericLiteral>.toInteger()� �
1 Float.parseFloat(<numericLiteral>);� �

Listing B.66: <numericLiteral>.toReal()� �
1 <collectionLiteral1>.union(<collectionLiteral2>);� �

Listing B.67: <collectionLiteral1>.union(<collectionLiteral2>)� �
1 (<booleanLiteral1> ^ <booleanLiteral2>);� �

Listing B.68: <booleanLiteral1> xor <booleanLiteral2>

Appendix C

Code Fragment Templates

These appendix lists all templates used to generate fragment code from OCL
constraints. The templates are de�ned using the template language StringTem-
plate which is introduced brie�y in section 3.2. The fragment code generation
is explained in section 5.3.� �
1 collectionLiteralExp(collectionName, collectionType,
2 elementCodes, elementExps) ::= <<
3 $collectionType$ $collectionName$;
4 $collectionName$ = new $collectionType$();
5

6 $if(elementExps)$
7 $elementCodes, elementExps:{code, exp |
8 $if(code)$$code$$endif$
9 exp

10 }; separator = "\n"$
11 $endif$
12 >>� �

Listing C.1: A template for collection literal expressions.� �
1 collectionLiteralExp_collectionItem(collectionName,
2 itemExp) ::= <<
3 $collectionName$.add($itemExp$);
4 >>� �
Listing C.2: A template for collection items in collection literal expressions.� �
1 collectionLiteralExp_collectionRange(collectionName,
2 indexVar, indexType, firstExp, lastExp) ::= <<
3 /∗ TODO: Auto−generated initialization
4 does only work for numeric values. ∗/
5 for ($indexType$ $indexVar$ = $firstExp$;
6 $indexVar$ <= $lastExp$; $indexVar$++) {
7 $collectionName$.add($indexVar$);
8 }
9 >>� �
Listing C.3: A template for collection initialization by collection range
expressions.

69

70 APPENDIX C. CODE FRAGMENT TEMPLATES

� �
1 enumLiteralExp(enumerationName, literalName) ::= <<
2 $enumerationName$.$literalName$
3 >>� �

Listing C.4: A template for enumeration literal expressions.� �
1 ifExp(ifCode, ifExp, thenCode, thenExp, elseCode,
2 elseExp, resultVar, resultType) ::= <<
3 $resultType$ $resultVar$;
4

5 $ifCode$
6

7 if ($ifExp$) {
8 $thenCode$
9 $resultVar$ = $thenExp$;

10 } else {
11 $elseCode$
12 $resultVar$ = $elseExp$;
13 }
14 >>� �

Listing C.5: A template for if expressions.� �
1 invalidLiteralExp() ::= <<
2 null
3 >>� �

Listing C.6: A template for invalid literal expressions.� �
1 iterateExp(sourceCode, sourceExp, sourceGenericType,
2 itVar, bodyCode, bodyExp, resultType, resultVar,
3 resultVarInitCode, resultVarInitExp) ::= <<
4 $sourceCode$
5 $resultVarInitCode$
6

7 $resultType$ $resultVar$;
8 $resultVar$ = $resultVarInitExp$;
9

10 /∗ IterateExp: Iterate through all elements
11 and perform an operation on them. ∗/
12 for ($sourceGenericType$ $itVar$: $sourceExp$) {
13 $bodyCode$$resultVar$ = $bodyExp$;
14 }
15 >>� �

Listing C.7: A template for iterate expressions.

71

� �
1 iteratorExp_any(sourceCode, sourceExp, itVar, itType,
2 bodyCode, bodyExp, resultVar) ::= <<
3 $sourceCode$
4 $itType$ $resultVar$;
5 $resultVar$ = null;
6

7 /∗ Iterator Any: Iterate through the elements and
8 return one element that fulfills the condition. ∗/
9 for ($itType$ $itVar$: $sourceExp$) {

10 $bodyCode$
11 if ($bodyExp$) {
12 $resultVar$ = $itVar$;
13 break;
14 }
15 // no else
16 }
17 >>� �

Listing C.8: A template for 'any' iterator expressions.� �
1 iteratorExp_collect(sourceCode, sourceExp, itVar, itType,
2 bodyCode, bodyExp, resultVar, resultType, addOp) ::= <<
3 $sourceCode$
4 $resultType$ $resultVar$;
5 $resultVar$ = new $resultType$();
6

7 /∗ Iterator Collect: Iterate through all elements and
8 collect them. Elements which are collections are
9 flattened. ∗/

10 for ($itType$ $itVar$: $sourceExp$) {
11 $bodyCode$
12 $resultVar$.$addOp$($bodyExp$);
13 }
14 >>� �

Listing C.9: A template for 'collect' iterator expressions.� �
1 iteratorExp_collectNested(sourceCode, sourceExp, itVar,
2 itType, bodyCode, bodyExp, resultVar, resultType) ::= <<
3 $sourceCode$
4 $resultType$ resultVar;
5 $resultVar$ = new $resultType$();
6

7 /∗ Iterator CollectNested: Iterate through all
8 elements and collect them. ∗/
9 for ($itType$ $itVar$: $sourceExp$) {

10 $bodyCode$
11 $resultVar$.add($bodyExp$);
12 }
13 >>� �

Listing C.10: A template for 'collectNested' iterator expressions.

72 APPENDIX C. CODE FRAGMENT TEMPLATES

� �
1 iteratorExp_exists(sourceCode, sourceExp, itVar, itType,
2 bodyCode, bodyExp, resultVar) ::= <<
3 $sourceCode$
4 $booleanType()$ $resultVar$;
5 $resultVar$ = false;
6

7 /∗ Iterator Exists: Iterate and check, if any element
8 fulfills the condition. ∗/
9 for ($itType$ $itVar$: $sourceExp$) {

10 $bodyCode$
11 if ($bodyExp$) {
12 $resultVar$ = true;
13 break;
14 }
15 // no else
16 }
17 >>� �

Listing C.11: A template for 'exists' iterator expressions.� �
1 iteratorExp_forAll(sourceCode, sourceExp, itVar, itType,
2 bodyCode, bodyExp, resultVar) ::= <<
3 $sourceCode$
4 $booleanType()$ $resultVar$;
5 $resultVar$ = true;
6

7 /∗ Iterator ForAll: Iterate and check, if all elements
8 fulfill the condition. ∗/
9 for ($itType$ $itVar$: $sourceExp$) {

10 $bodyCode$
11 if (!$bodyExp$) {
12 $resultVar$ = false;
13 break;
14 }
15 // no else
16 }
17 >>� �

Listing C.12: A template for 'forAll' iterator expressions.

73

� �
1 iteratorExp_isUnique(sourceCode, sourceExp, itVar, itType,
2 bodyCode, bodyExp, collectionVar, resultVar) ::= <<
3 $sourceCode$
4 $setType()$<$itType$> $collectionVar$;
5 $booleanType()$ $resultVar$;
6

7 $collectionVar$ = new $setType()$<$itType$>();
8 $resultVar$ = true;
9

10 /∗ Iterator IsUnique: Iterate and check, if all
11 elements are unique. ∗/
12 for ($itType$ $itVar$: $sourceExp$) {
13 $bodyCode$
14 if ($collectionVar$.includes($bodyExp$)) {
15 $resultVar$ = false;
16 break;
17 } else {
18 $collectionVar$.add($bodyExp$);
19 }
20 }
21 >>� �

Listing C.13: A template for 'isUnique' iteraotor expressions.� �
1 // −−− IteratorExp for Iterator One −−−
2 iteratorExp_one(sourceCode, sourceExp, itVar, itType,
3 bodyCode, bodyExp, resultVar) ::= <<
4 $sourceCode$
5 $booleanType()$ $resultVar$;
6 $resultVar$ = false;
7

8 /∗ Iterator One: Iterate and check, if exactly
9 one element fulfills the condition. ∗/

10 for ($itType$ $itVar$: $sourceExp$) {
11 $bodyCode$
12 if ($bodyExp$) {
13 if ($resultVar$) {
14 // Found a second element.
15 $resultVar$ = false;
16 break;
17 } else
18 // Found a first element.
19 $resultVar$ = true;
20 }
21 }
22 // no else
23 }
24 >>� �

Listing C.14: A template for 'one' iterator expressions.

74 APPENDIX C. CODE FRAGMENT TEMPLATES

� �
1 iteratorExp_reject(sourceCode, sourceExp, itVar, itType,
2 bodyCode, bodyExp, resultVar, resultType) ::= <<
3 $sourceCode$
4 $resultType$ $resultVar$;
5 $resultVar$ = new $resultType$();
6

7 /∗ Iterator Reject: Select all elements which do
8 not fulfill the condition. ∗/
9 for ($itType$ $itVar$: $sourceExp$) {

10 $bodyCode$
11 if (!$bodyExp$) {
12 $resultVar$.add($itVar$);
13 }
14 // no else
15 }
16 >>� �

Listing C.15: A template for 'reject' iterator expressions.� �
1 iteratorExp_select(sourceCode, sourceExp, itVar, itType,
2 bodyCode, bodyExp, resultVar, resultType) ::= <<
3 $sourceCode$
4 $resultType$ $resultVar$;
5 $resultVar$ = new $resultType$();
6

7 /∗ Iterator Select: Select all elements
8 which fulfill the condition. ∗/
9 for ($itType$ $itVar$: $sourceExp$) {

10 $bodyCode$
11 if ($bodyExp$) {
12 $resultVar$.add($itVar$);
13 }
14 // no else
15 }
16 >>� �

Listing C.16: A template for 'select' iterator expressions.

75

� �
1 iteratorExp_sortedBy(sourceCode, sourceExp, itVar, itVar2,
2 itType, bodyCode, bodyExp, bodyCode2, bodyExp2,
3 comparatorName, compareResult, resultVar, resultType)

::= <<
4 $sourceCode$
5 $resultType$ $resultVar$;
6 java.util.Comparator<$itType$> $comparatorName$;
7

8 $resultVar$ = $sourceExp$;
9

10 $comparatorName$ = new java.util.Comparator<$itType$
>() {

11

12 /∗∗ Method which compares two elements of the
collection. ∗/

13 public int compare($itType$ $itVar$, $itType$ $
itVar2$) {

14 int $compareResult$;
15

16 $bodyCode$$bodyCode2$$compareResult$ = 0;
17

18 if ($bodyExp$ < $bodyExp2$) {
19 $compareResult$ = −1;
20 } else if ($bodyExp$ > $bodyExp2$) {
21 $compareResult$ = 1;
22 }
23

24 return $compareResult$;
25 }
26 };
27

28 $resultVar$ = java.util.Collections.sort($resultVar$,
$comparatorName$);

29 >>� �
Listing C.17: A template for 'sortedBy' iterator expressions.� �

1 letExp(varType, varName, initCode, initExp, inCode) ::= <<
2 $varType$ $varName$;
3 $if(initCode)$
4 $initCode$
5 $endif$
6

7 $if(initExp)$
8 $varName$ = $initExp$;
9 $endif$

10

11 $inCode$
12 >>� �

Listing C.18: A template for let expressions.

76 APPENDIX C. CODE FRAGMENT TEMPLATES

� �
1 literalExp(type, value) ::= <<
2 new $type$($value$)
3 >>� �

Listing C.19: A template for literal expressions.� �
1 propertyCallExp(sourceExp, propertyName) ::= <<
2 $sourceExp$.$propertyName$
3 >>� �

Listing C.20: A template for property call expressions.� �
1 propertyCallExpOnTuple(sourceExp, propertyName) ::= <<
2 $sourceExp$.get("$propertyName$")
3 >>� �

Listing C.21: A template for property call expressions on tuple types.� �
1 stringLiteralExp(value) ::= <<
2 "$value$"
3 >>� �

Listing C.22: A template for string literal expressions.� �
1 tupleLiteralExp(tupleName, argNames, argCodes, argExps)

::= <<
2 $tupleType()$ $tupleName$;
3 $tupleName$ = new $tupleType()$();
4

5 $if(argNames)$
6 $argNames, argCodes, argExps:{name, code, exp |
7 $if(code)$
8 $code$
9 $endif$

10

11 $tupleName$.put($name$, exp);
12 }; separator = "\n"$
13 $endif$
14 >>� �

Listing C.23: A template for tuple literal expressions.� �
1 // −−− UndefinedLiteralExp −−−
2 undefinedLiteralExp() ::= <<
3 null
4 >>� �

Listing C.24: A template for unde�ned literal expressions.

Appendix D

The Royal and Loyal Example

The Royal and Loyal example was developed by Jos Warmer and Anneke Kleppe
to explain the di�erent features of OCL. The model was published in [WK04].
An adapted version which is used in the OCL examples of this work is shown
in �gure D.1. In the following some constraints are listed which were also used
to test the developed Java code generator.� �
1 −− Body Expression 1:
2 context LoyaltyProgram::getServices(): Set
3 body: partners.deliveredServices
4

5 −− Body Expression 2:
6 context LoyaltyAccount::getCustomerName() : String
7 body: membership.card.owner.name
8

9 −− Definition 1:
10 context LoyaltyAccount
11 def: turnover : Real = transactions.amount−>sum()
12

13 −− Definition 2:
14 context LoyaltyProgram
15 def: getServicesByLevel(levelName: String): Set(Service)
16 = levels−>select(name = levelName).availableServices

−>asSet()
17

18 −− Definition 3:
19 context Membership
20 def: getCurrentLevelName() : String = currentLevel.name
21

22 −− Definition 4:
23 context LoyaltyAccount
24 def: usedServices: Set(Service) = transactions.service−>

asSet()
25

26 −− Definition 5:
27 context Customer
28 def: initial: String = name.substring(1, 1)� �
Listing D.1: Constraints de�ned on the Royal and Loyal Example (part 1).

77

78 APPENDIX D. THE ROYAL AND LOYAL EXAMPLE

LoyaltyProgram

enroll(c : Customer) : boolean
getServices() : Set
getName() : String
addService(p : ProgramPartner,l : ServiceLevel,s : Service)

name : String

Customer

getAge() : int
birthdayHappens() : void

name : String
title : String
isMale : boolean
dateOfBirth : Date
age : int

CustomerCard

valid : boolean
validFrom : Date
validThru : Date
color : Color
printedName : String

ProgramPartner

numberOfCustomers : int
name : String

Service

calcPoints() : int
upgradePointsEarned(amount : Integer)

condition : boolean
pointsEarned : int
pointsBurned : int
description : String
serviceNr : int

Transaction

getProgram() : LoyaltyProgram

points : int
date : Date
amount : double

Burning Earning

ServiceLevel

name : String

LoyaltyAccount

earn(i : int) : int
burn(i : int) : int
isEmpty() : boolean
getCustomerName() : String

points : int
number : int
totalPointsEarned : int

<<enumeration>>
Color

silver
gold

1..* partners

1..*

programs

1partner

0..*deliveredServices

1service

1

transaction

0..*

transactions

1 card

0..* cards

1 owner
1program

1..*
levels
{ordered}

0..* availableServices

1 level

<<datatype>>
Date

isBefore(t : Date) : boolean
isAfter(t : Date) : boolean
=(t : Date) : boolean

now : Date

1

account 1..*

transactions

0..*

programs

0..*

participants

Membership

membership1

card

1

1accounts

1membership

1

membership

1
program

currentLevel 1

memberships1

Figure D.1: The Royal and Loyal model by Jos Warmer et al. [WK04].

79

� �
1 −− Definition 6:
2 context CustomerCard
3 def: getTotalPoints(d: Date) : Integer = transactions−>

select(date.isAfter(d)).points−>sum()
4

5 −− Definition 7:
6 context CustomerCard
7 def: getAllInstances() : Set(CustomerCard) = self.

allInstances()
8

9 −− Definition 8:
10 context ProgramPartner
11 def: getBurningTransactions(): Set(Transaction) =
12 self.deliveredServices.transaction−>iterate(
13 t : Transaction;
14 resultSet : Set(Transaction) = Set{} |
15

16 if (t.oclIsTypeOf(Burning)) then
17 resultSet−>including(t)
18 else
19 resultSet
20 endif
21)
22

23 −− Derived Value 1:
24 context CustomerCard::printedName
25 derive: owner.title.concat(’ ’).concat(owner.name)
26

27 −− Derived Value 2:
28 context LoyaltyAccount::totalPointsEarned
29 derive: transactions−>select(oclIsTypeOf(Earning)).points

−>sum()
30

31 −− Initial Expression 1:
32 context LoyaltyAccount::points
33 init: 0
34

35 −− Initial Expression 2:
36 context CustomerCard::valid
37 init: true
38

39 −− Initial Expression 3:
40 context LoyaltyAccount::transactions : Set(Transaction)
41 init: Set{}
42

43 −− Invariant 1:
44 context Customer
45 inv ofAge: age >= 18� �
Listing D.2: Constraints de�ned on the Royal and Loyal Example (part 2).

80 APPENDIX D. THE ROYAL AND LOYAL EXAMPLE

� �
1 −− Invariant 2:
2 context CustomerCard
3 inv checkDates: validFrom.isBefore(validThru)
4

5 −− Invariant 3:
6 context LoyaltyProgram
7 inv knownServiceLevel: levels−>includes(membership.

currentLevel)
8

9 −− Invariant 4:
10 context Membership
11 inv correctCard: program.participants.cards−>includes(self

.card)
12

13 −− Invariant 5:
14 context Membership
15 inv levelAnColor:
16 currentLevel.name = ’Silver’ implies card.color = Color

::silver
17 and
18 currentLevel.name = ’Gold’ implies card.color = Color::

gold
19

20 −− Invariant 6:
21 context LoyaltyProgram
22 inv minServices: partners−>forAll(deliveredServices−>size

() >= 1)
23

24 −− Invariant 7:
25 context Customer
26 inv sizesAgree:
27 programs−>size() = cards−>select(valid = true)−>size

()
28

29 −− Invariant 8:
30 context LoyaltyProgram
31 inv noAccounts:
32 partners.deliveredServices
33 −>forAll(pointsEarned = 0 and pointsBurned = 0)
34 implies membership.accounts−>isEmpty()
35

36 −− Invariant 9:
37 context ProgramPartner
38 inv nrOfParticipants: numberOfCustomers = programs.

participants−>size()
39

40 −− Invariant 10:
41 context LoyaltyProgram
42 inv firstLevel: levels−>first().name = ’Silver’� �
Listing D.3: Constraints de�ned on the Royal and Loyal Example (part 3).

81

� �
1 −− Invariant 11:
2 context ProgramPartner
3 inv totalPoints: deliveredServices.transaction.points−>sum

() < 10000
4

5 −− Invariant 12:
6 context ProgramPartner
7 inv totalPointsEarning:
8 deliveredServices.transaction−>select(oclIsTypeOf(

Earning)).points−>sum() < 10000
9

10 −− Invariant 13:
11 context CustomerCard
12 inv:
13 let correctDate : Boolean =
14 self.validFrom.isBefore(Date::now()) and
15 self.validThru.isAfter(Date::now())
16 in
17 if valid then
18 correctDate = false
19 else
20 correctDate = true
21 endif
22

23 −− Invariant 14:
24 context LoyaltyAccount
25 inv oneOwner: transactions.card.owner−>asSet()−>size() = 1
26

27 −− Invariant 15:
28 context LoyaltyAccount
29 inv: points > 0 implies transactions−>exists(t | t.points

> 0)
30

31 −− Invariant 16:
32 context Service
33 inv: self.oclIsUndefined() = false
34

35 −− Invariant 17:
36 context Service
37 inv: self.oclIsInvalid() = false
38

39 −− Invariant 18:
40 context Burning
41 inv: self.points = self.oclAsType(Transaction).points
42

43 −− Postcondition 1:
44 context LoyaltyProgram::enroll(c : Customer)
45 post: participants = participants@pre−>including(c)� �
Listing D.4: Constraints de�ned on the Royal and Loyal Example (part 4).

82 APPENDIX D. THE ROYAL AND LOYAL EXAMPLE

� �
1 −− Postcondition 2:
2 context LoyaltyProgram::addService(aPartner:

ProgramPartner, aLevel: ServiceLevel, aService:
Service)

3 post: partners.deliveredServices−>includes(aService)
4

5 −− Postcondition 3:
6 context LoyaltyProgram::addService(aPartner:

ProgramPartner, aLevel: ServiceLevel, aService:
Service)

7 post: levels.availableServices−>includes(aService)
8

9 −− Postcondition 4:
10 context LoyaltyProgram::addService(aPartner:

ProgramPartner, aLevel: ServiceLevel, aService:
Service)

11 post: partners.deliveredServices−>includes(aService) and
levels.availableServices−>includes(aService)

12

13 −− Postcondition 5:
14 context LoyaltyAccount::isEmpty():Boolean
15 post: result = (points = 0)
16

17 −− Postcondition 6:
18 context Customer::birthdayHappens()
19 post: age = age@pre + 1
20

21 −− Postcondition 7:
22 context Service::upgradePointsEarned(amount: Integer)
23 post: calcPoints() = calcPoints@pre() + amount
24

25 −− Postcondition 8:
26 context Transaction::getProgram(): LoyaltyProgram
27 post: not result.oclIsNew()
28

29 −− Postcondition 9:
30 context Transaction::getProgram(): LoyaltyProgram
31 post: result = self.card.membership.program
32

33 −− Postcondition 10:
34 context Transaction::getProgram(): LoyaltyProgram
35 post: self.oclIsTypeOf(Transaction)
36

37 −− Postcondition 11:
38 context LoyaltyProgram::enroll(c : Customer)
39 post: membership = membership@pre
40

41 −− Precondition 1:
42 context LoyaltyProgram::enroll(c : Customer)
43 pre: c.name <> ’’� �
Listing D.5: Constraints de�ned on the Royal and Loyal Example (part 5).

83

� �
1 −− Precondition 2:
2 context LoyaltyProgram::addService(aPartner:

ProgramPartner, aLevel: ServiceLevel, aService:
Service)

3 pre: partners−>includes(aPartner)
4

5 −− Precondition 3:
6 context LoyaltyProgram::addService(aPartner:

ProgramPartner, aLevel: ServiceLevel, aService:
Service)

7 pre: levels−>includes(aLevel)
8

9 −− Precondition 4:
10 context LoyaltyProgram::addService(aPartner:

ProgramPartner, aLevel: ServiceLevel, aService:
Service)

11 pre: partners−>includes(aPartner) and levels −> includes(
aLevel)

12

13 −− Precondition 5:
14 context Transaction::getProgram(): LoyaltyProgram
15 pre: self.oclIsTypeOf(Transaction)� �
Listing D.6: Constraints de�ned on the Royal and Loyal Example (part 6).

84 APPENDIX D. THE ROYAL AND LOYAL EXAMPLE

Bibliography

[ABR06] Apel, S. ; Batory, D. ; Rosenmüller, M.: On
the Structure of Crosscutting Concerns: Using Aspects or
Collaborations? In: Proceedings of the 1st Workshop
on Aspect-Oriented Produt Line Engineering (AOPLE'06) co-
located with the 5th Int'l Conf. on Generative Programming
and Component Engineering (GPCE'06), 2006, S. 20�24. �
Available at http://www.softeng.ox.ac.uk/aople/aople1/AOPLE1-
Proceedings.pdf

[AK07] Apel, S. ; Kästner, C.: Pointcuts, advice, re�nements, and
collaborations: similarities, di�erences, and synergies. In: In-
novations in Systems and Software Engineering Bd. 3, Springer
London, 2007, S. 281�289. � More information available at
http://www.springerlink.com/content/08m600873g3044t4/

[Aÿm03] Aÿmann, Uwe: Invasive Software Composition. Edition 2.
Springer-Verlag Berlin, Heidelberg, New York, 2003. � ISBN 3�
540�44385�1

[Asp09a] The AspectC++ Project. AspectC++ Project Website, 2009. � Avail-
able at http://www.aspectc.org/

[Asp09b] The AspectJ Project. Eclipse Project Website, 2009. � Available at
http://www.eclipse.org/aspectj/

[BDF+04] Barnett, M. ; DeLine, R. ; Fähndrich, M. ; Leino, K. Rus-
tan M. ; Schulte, Wolfram: Veri�cation of object-oriented pro-
grams with invariants. In: Special issue ECOOP 2003 Workshop on
FTfJP Bd. 3, ETH Zurich, Chair of Software Engineering, June
2004 (Journal of Object Technology), S. 27�56. � Available at
http://www.jot.fm/issues/issue_2004_06/article2

[BDL04] Briand, L. C. ; Dzidek, W. ; Labiche, Y.: Using
Aspect-Oriented Programming to Instrument OCL Con-
stracts in Java / Carleton University Ottawa, Canada.
2004 (SCE-04-03). � Technical Report. � Available at
http://squall.sce.carleton.ca/pubs/tech_report/TR_SCE-04-
03.pdf

[BDL05] Briand, L. C. ; Dzidek, W. J. ; Labiche, Y.: Instrumenting
Contracts with Aspect-Oriented Programming to Increase Observ-
ability and Support Debugging. In: Society, IEEE C. (Hrsg.): 21st

85

86 BIBLIOGRAPHY

IEEE International Conference on Software Maintenance (ICSM),
Budapest, Hungary, September 25-30, 2005, S. 687�690. � Available
at http://portal.acm.org/citation.cfm?id=1091907

[Böh06] Böhm, Oliver: Aspektorientierte Programmierung mit AspectJ 5.
Edition 1. dpunkt.verlag GmbH, 2006. � ISBN 3�89864�330�1

[Brä07] Bräuer, Matthias: Models and Metamodels in a QVT/OCL De-
velopment Environment. Groÿer Beleg, May 2007. � Available at
http://dresden-ocl.sourceforge.net/gbbraeuer/index.html

[Bra06] Brandt, Ronny: Java-Codegenerierung und Instrumentierung von
Java-Programmen in der metamodellbasierten Architektur des Dres-
den OCL Toolkit. Groÿer Beleg, September 2006

[Bra07] Brandt, Ronny: Ein OCL-Interpreter für das Dresden
OCL2Toolkit basierend auf dem Pivotmodell. Diploma Thesis, Au-
gust 2007

[BSM+03] Budinsky, Frank ; Steinberg, David ; Merks, Ed ; Ellersick,
Raymond ; Grose, Timothy J.: Eclipse Modeling Framework: A
Developer's Guide. Edition 2. Addison-Wesley Professional, 2003. �
ISBN 0�13�142542�0

[DBL06] Dzidek, W. J. ; Briand, L. C. ; Labiche, Y.: Lessons
Learned from Developing a Dynamic OCL Constraint Enforcement
Tool for Java. In: Revised Selected Papers, Jean-Michel
ed. by B. ed. by Bruel (Hrsg.): Satellite Events at the MoD-
ELS 2005 Conference: MoDELS 2005 International Workshops
OCLWS, MoDeVA, MARTES, AOM, MTiP, WiSME, MODAUI,
NfC, MDD, WUsCAM, Montego Bay, Jamaica, October 2-7,
2005 Bd. 3844, Springer-Verlag GmbH, 2006 (Lecture Notes in
Computer Science ISBN: 3-540-31780-5), S. 10�19. � Available at
http://simula.no/research/engineering/publications/Dzidek.2006.1/
simula_pdf_�le

[Eis06] Eisenreich, Katrin: Varianzanalyse zur Generierung imperativen
Codes aus OCL-Ausdrücken. Groÿer Beleg, October 2006

[Fin99] Finger, Frank: Java-Implementierung der OCL-Basisbibliothek.
Groÿer Beleg, July 1999. � Available at http://www-st.inf.tu-
dresden.de/ocl/�3/beleg.pdf

[Fin00] Finger, Frank: Design and Implementation of a Modular OCL
Compiler. Diploma Thesis, March 2000. � Available at http://www-
st.inf.tu-dresden.de/ocl/�3/diplom.pdf

[GHJV95] Gamma, Erich ; Helm, Richard ; Johnson, Ralph ; Vlissides,
John: Design Patterns - Elements of Reusable Object-Oriented Soft-
ware. Edition 2. Addison-Wesley Professional, 1995. � ISBN 0�20�
163361�2

BIBLIOGRAPHY 87

[GJSB05] Gosling, James ; Joy, Bill ; Steele, Guy ; Bracha, Gilad:
Java(TM) Language Speci�cation. Edition 3. Addison Wesley, 2005.
� ISBN 0�32124�678�0

[GKB08] Gogolla, Martin ; Kuhlmann, Mirco ; Büttner, Fabian: A
Benchmark for OCL Engine Accuracy, Determinateness, and Ef-
�ciency. In: Proceedings of the 11th International Conference on
Model Driven Engineering Languages and Systems (MoDELS'2008)
Bd. 5301, Springer, Berlin, 2008 (LNCS), S. 446�459. � Available at
http://db.informatik.uni-bremen.de/publications/

[Hei05] Heidenreich, Florian: SQL-Codegenerierung in der metamodell-
basierten Architektur des Dresden OCL Toolkit. Groÿer Beleg, May
2005

[Hei06] Heidenreich, Florian: OCL-Codegenerierung für deklarative
Sprachen. Diploma Thesis, April 2006

[HH01] Heinrich Huÿmann, Prof. D. h.: Formal Speci�cation of Soft-
ware Systems. Slides from lectures at the Technische Univer-
sität Dresden, Dezember 2001. � Available at http://st.inf.tu-
dresden.de/fs/slides/fss5a-sl.pdf

[MDT09] Eclipse Model Development Tools Project. Eclipse Project Website,
2009. � Available at http://www.eclipse.org/modeling/mdt/

[Ock03] Ocke, Stefan: Entwurf und Implementierung eines
metamodellbasierten OCL-Compilers. Diploma The-
sis, June 2003. � Available at http://www-st.inf.tu-
dresden.de/home/html/de/diplomarbeiten/DAOcke.pdf

[OMG97] Object Management Group � OMG: Object Constraint Language
Speci�cation. Version 1.1. September 1997. � Available at
http://www.omg.org/docs/ad/97-08-08.pdf

[OMG06] Object Management Group � OMG: Object Constraint Language,
OMG Available Speci�cation. Version 2.0. May 2006. � Available at
http://www.omg.org/docs/formal/06-05-01.pdf

[Sch98] Schmidt, Andreas: Untersuchungen zur Abbildung von OCL-
Ausdrücken auf SQL. Diploma Thesis, September 1998

[Str09] StringTemplate Website. ANT Project Website, 2009. � Available at
http://www.stringtemplate.org/

[Thi07] Thieme, Nils: Reengineering des OCL2-Parsers. Groÿer
Beleg, November 2007. � Available at http://dresden-
ocl.sourceforge.net/downloads/pdfs/gb_nils_thieme.pdf

[Ull06] Ullenboom, C.: Java ist auch eine Insel - Programmieren
für die Java 2-Plattform in der Version 5. Edition 5. Galileo
Computing, 2006. � ISBN 978�3�89842�747�0. � Available at
http://openbook.galileodesign.de/javainsel5/

88 BIBLIOGRAPHY

[Wie00] Wiebicke, Ralf: Utility Support for Checking OCL Business Rules
in Java Programs. Diploma Thesis, December 2000. � Available at
http://rw7.de/ralf/diplom00/intro.html

[Wik09] Uni�ed Modeling Language (UML). Wikipedia - The
Free Encyclopedia, February 2009. � Available at
http://de.wikipedia.org/wiki/Uni�ed_Modeling_Language

[WK04] Warmer, Jos ; Kleppe, Anneke: Object Constraint Language 2.0.
mitp-Verlag/Bonn, 2004. � ISBN 3�8266�1445�3. � Translated from
the English publication. Original published at Pearson Education,
Inc. 2003.

Con�rmation

I con�rm that I independently prepared the thesis and that I only used the
references and auxiliary means indicated in the thesis.

Dresden, February 19, 2009

	1 Introduction
	2 The Dresden OCL Toolkit
	2.1 The Dresden OCL Toolkit
	2.2 The Dresden OCL2 Toolkit
	2.3 Dresden OCL2 for Eclipse

	3 Employed Programming Techniques
	3.1 Aspect-Oriented Programming
	3.2 StringTemplate

	4 Requirement Analysis
	4.1 The DOT2 and Requirement Analysis
	4.1.1 Variation of the Fragment Generation
	4.1.2 Variation of the Fragment Instrumentation
	4.1.3 Parametrization of the Code Generation

	4.2 Related Work

	5 Design and Fragment Generation
	5.1 The Architecture
	5.1.1 The Package Structure
	5.1.2 The Class Structure

	5.2 Type Mapping
	5.2.1 Primitive Types
	5.2.2 Enumerations
	5.2.3 Tuples
	5.2.4 Collection Types
	5.2.5 Special OCL types

	5.3 Fragment Generation
	5.3.1 Property Call Expressions
	5.3.2 Operation Call Expressions
	5.3.3 Collection Literal Expressions
	5.3.4 Iterator Expressions

	6 Fragment Instrumentation
	6.1 Initial and Derived Values
	6.1.1 Initial Values with Init
	6.1.2 Derived Values with Derive

	6.2 Method Implementation with Body
	6.3 Attribute and Method Definition with Def
	6.4 Preconditions
	6.5 Postconditions
	6.5.1 The Special Property @pre
	6.5.2 The Special Operation OclIsNew

	6.6 Invariants
	6.6.1 Strong Verification
	6.6.2 Weak Verification
	6.6.3 Transactional Verification

	6.7 The Special Operation AllInstances

	7 GUI Implementation and Test
	7.1 The Code Generation Wizard
	7.2 Tests on the Implementation
	7.2.1 Fragment Generation
	7.2.2 Fragment Instrumentation
	7.2.3 Performance Test

	8 Evaluation and Outlook on Future Works
	8.1 The Task of this Work
	8.2 The Provided Features
	8.2.1 Variation of the Fragment Generation
	8.2.2 Variation of the Fragment Instrumentation
	8.2.3 Parameterization of the Code Generation

	8.3 Outlook on Future Works

	A Type Mapping
	B Operation Mapping
	C Code Fragment Templates
	D The Royal and Loyal Example
	Bibliography

