

Russian-German Workshop “Innovation Information Technologies: theory and practice”, Ufa, Russia, 2009

1

Model and Object Verification by Using Dresden OCL

Birgit Demuth

Department of Computer Science

Technische Universität Dresden

Dresden, Germany

e-mail: birgit.demuth@tu-dresden.de

Claas Wilke

Department of Computer Science

Technische Universität Dresden

Dresden, Germany

e-mail: info@claaswilke.de

Abstract

1
The Object Constraint Language (OCL) is a formal

language standardized by the OMG (Object Management

Group) that allows the specification of constraints on

MOF- (Meta Object Facility) or EMF (Eclipse Modeling

Framework) Ecore-based models. After about ten years of

research and OCL prototyping in the area of using formal

methods in practical software engineering, OCL is

appreciated by the industry and tool vendors. An often

used OCL library is the Dresden OCL Toolkit. OCL can

be applied both on the meta-model (M2) and on the

model layer (M1).

In this paper we present use cases for OCL in the context

of the Dresden OCL Toolkit. We show how the user is

able to specify precise semantics both on the meta-model

and the model layer by OCL, and how these OCL

constraints can be verified on models respectively on

objects.

1. Introduction

The Object Constraint Language (OCL) is part of the

Unified Modeling Language (UML) which is

standardized by the Object Management Group (OMG)

[1, 2]. OCL allows the specification of constraints on

MOF- (Meta Object Facility) [3] or EMF (Eclipse

Modeling Framework) [4] Ecore-based models. Since the

release of OCL 2.0 in 2004, OCL can be regarded as

both, a query and a constraint language. Besides the

definition of invariants, and pre- and postconditions, OCL

can be used to enrich models with new fields, operations,

and derived classes. OCL can be used to enrich models at

different layers of the MOF Four Layer Metadata

Architecture [3].

On the meta-model layer, OCL is mostly used to specify

well-formedness rules (WFR) that must be hold for

models. At first, OCL was used for the Unified Modeling

Language (UML). However, today OCL is also a

recognized technique to specify the semantics of other

MOF- or Ecore-based meta-models and domain specific

languages (DSLs). On the model layer, OCL often helps

Proceedings of the Russian-German Workshop

“Innovation Information Technologies: theory and

practice”, July 25-31, Ufa, Russia, 2009

to specify constraints (invariants as well as pre- and

postconditions) on (business) objects, particularly if the

power of UML concepts is not enough to express precise

semantics.

The Dresden OCL Toolkit [5] provides a set of tools

which enable the developers of UML tools to extend their

tools with OCL support. The recent version of the toolkit

provides an OCL2 Parser, an OCL2 Interpreter, and an

OCL-to-Java Code Generator. Because the toolkit's

architecture is based on a pivot model, the toolkit can be

adapted to different meta-models and DSLs. Thus, the

toolkit can be used to load, parse, and verify OCL

constraints on different layers of the MOF Four Layer

Architecture [3]. This paper will present a set of use cases

which illustrate the wide-spread application of OCL and

the Dresden OCL Toolkit.

The remainder of this paper is structured as follows: In

Section 2, we present the Dresden OCL Toolkit and its

recent version, Dresden OCL2 for Eclipse. A short

introduction to the pivot model will be given. In Section

3, we present the two different approaches to verify OCL

constraints, the interpretative and the generative

approach. In Section 4, we present different use cases of

the Dresden OCL Toolkit based on these approaches. The

last section concludes the work.

2. The Dresden OCL Toolkit

The Dresden OCL Toolkit [5] is one of the software

projects of the Software Technology Group at the

Technische Universität Dresden, Germany.

2.1 Development History

The intention of the development of the Dresden OCL

Toolkit was to provide a library provided with a set of

OCL tools which can be reused by UML tool builders to

extend their tools with OCL support. The toolkit has been

designed for openness and modularity and is provided as

open source at the project website [5]. It has been

developed and evolved during many student theses since

1998. Today, the toolkit is one of the major software

projects at the Software Technology Group, and three

different versions of the toolkit have already been

released.

Model and Object Verification by Using Dresden OCL

2

Figure 1: The architecture of Dresden OCL2 for Eclipse

The first and second version of the toolkit were released

in 1999 and 2005. Both versions supported syntax and

type checking of OCL constraints defined on UML class

models, Java and SQL code generation, as well as Java

code instrumentation [6].

In 2007, the toolkit was rewritten and released as

Dresden OCL2 for Eclipse. The implementation of a

pivot model as an intermediate meta-model allows

alignment of meta-models of arbitrary domain-specific

modeling languages (DSLs). The pivot model made the

recent version of the toolkit independent from specific

repositories and meta-models [7]. Today, adaptations to

the UML2 meta-model of the Eclipse Model

Development Tools Project [8] and to the Eclipse

Modeling Framework (EMF) Ecore meta-model [4] are

supported. Via the support of the UML2 meta-model,

models created with the case tools TopCased [9],

MagicDraw® UML [10], and Visual Paradigm [11] can

be imported (via XMI export). Dresden OCL2 for Eclipse

currently provides an OCL2 Parser to load and verify

OCL constraints, an OCL2 Interpreter, and an OCL-to-

Java Code Generator. Figure 3 shows a screenshot of

Dresden OCL2 for Eclipse, showing the Model and

Model Instance Browser, and the OCL2 Interpreter.

2.2 The Architecture of the Toolkit

The recent toolkit has been developed as a set of

Eclipse/OSGi plug-ins. The architecture of Dresden

OCL2 for Eclipse is shown in Figure 1. The architecture

can be separated into three layers: The back-end, the

base, and the tools layer.

The back-end layer represents the repository and the

meta-model which can easily be exchanged because all

other packages of the toolkit communicate with the pivot

model instead of the meta-model. The pivot model

delegates all requests to the employed meta-model. A

common meta-model is the UML2 meta-model of the

Eclipse Model Development Tools Project [7].

The second layer is the toolkit’s base layer which

contains the Pivot Model, Essential OCL, and the Model

Bus. The use of the pivot model was mentioned before.

The package Essential OCL implements the OCL

Standard Library by extending the pivot model. The

model bus loads, manages, and provides access to meta-

models, models, and model instances the user wants to

work with.

The third layer contains all tools that use the packages of

the second layer to load, verify, and interpret OCL

constraints. The layer contains the OCL2 Parser for

syntax analysis and type checking of OCL constraints, the

OCL2 Interpreter which can be used to interpret OCL

constraints on meta-model or model instances, and the

OCL22Java Code Generator which transforms OCL

constraints into aspect-oriented AspectJ [12] code. Note

that the OCL2 Parser is located in the tools layer, but that

the other tools are not fully independent of the OCL2

Parser. Syntax and type checking is required for both,

interpretation and code generation.

3 Interpretation vs. Generation

Generally, two different approaches exist to verify OCL

constraints: an interpretative and a generative approach.

Russian-German Workshop “Innovation Information Technologies: theory and practice”, Ufa, Russia, 2009

3

Figure 2: The Generic Three Layer Metadata Architecture: The relationships between meta-models, models and

model instances in the scope of an OCL specification.

The interpretative approach verifies constraints by

interpreting them on a model and its objects. The

generative approach instead generates code or queries

which can be executed to verify the constraints after

generation. Both approaches are explained more detailed

in this section. Additionally, this section explains which

resources are required to describe models and specify

constraints for verification.

3.1 Modeling OCL

The Object Constraint Language [1] is a language which

always depends on another modeling language (usually

the UML [2]). Without another language used for

modeling, it does not make any sense to define constraints

because OCL is used for constraint specification but not

for modeling itself. Thus, besides OCL, a modeling

language is required to define a model on which OCL

constraints shall be specified.

Each modeling language is defined in another language,

its meta-modeling language. For example, the Unified

Modeling Language is defined using the Meta Object

Facility (MOF) [3], the standardized meta-meta language

of the OMG. The MOF is used to describe the UML

meta-model that can be used to model UML models.

Generally spoken, each model requires a meta-model that

is used to describe the model. The model can be

instantiated by model instances (for example an UML

class diagram could be instantiated by an UML object

diagram). The model can be enriched with OCL

constraints that are defined on the model (using an OCL

meta-model) and can then be verified for model instances

of the model.

The OMG introduced the MOF Four Layer Metadata

Architecture [3] which is used to arrange and structure

the meta-model, the model, and its model instances into a

layered architecture. Generally, four layers exist, the

meta-meta-model layer (M3), the meta-model layer (M2),

the model layer (M1), and the model instance layer (M0).

OCL constraints can be defined on both, meta-models and

models to verify models or model instances. Thus, the

four layer metadata architecture can be generalized to a

Generic Three Layer Metadata Architecture in the scope

of an OCL definition (see Figure 2). On the Mn+1 layer

lies the meta-model that is used to define the model that

shall be constrained. The used meta-model, or DSL, has

to be adapted to the pivot model. The Dresden OCL

Toolkit provides a utility framework for easy pivot-model

adapter generation. On the Mn layer lies the model which

is an instance of the meta-model that is enriched by the

specification of OCL constraints. Finally, on the Mn-1

layer lies the model instance on which the OCL

constraints shall be verified. Please note, that in the

context of such a generic layer architecture, a model

instance can be both a model (like an UML class

diagram) or an object (like a Java object). Thus, Dresden

OCL2 for Eclipse can be used for both model and object

verification, depending on whether a meta-meta-model or

a meta-model is adapted to the pivot model.

Model and Object Verification by Using Dresden OCL

4

3.2 The Interpretative Approach

A first approach for OCL verification is the interpretative

approach. The interpretative approach uses an interpreter

to interpret constraints on a model instance (Mn-1) by

working on its model (Mn). The interpretative approach

includes the following steps:

1. A model is described (Mn) using a meta-model

adapted to the pivot model (Mn+1).

2. The model is enriched with OCL constraints which

are defined on the types and operations defined in the

model (Mn). We assume that an OCL specification

includes the syntax and type checking process

provided by the OCL2 Parser.

3. A model instance for which the OCL constraints shall

be verified must be defined or generated (Mn-1).

4. The OCL2 Interpreter interprets the constraints

defined on the model for the model instance, working

on the model and its objects (Mn and Mn-1).

In contrast to the generative approach (explained in the

following), the interpretative approach includes the

verification of model instances. The result of the

interpretative approach is a set of interpretation results,

normally Boolean values like true or false.

3.3 The Generative Approach

A second approach is the generative approach. The

generative approach uses a code generator or a model

transformation framework to generate a new model and

queries or code which can be executed for constraint

verification. The generative approach includes the

following steps:

1. A model is described (Mn) using a meta-model

adapted to the pivot model (Mn+1).

2. The model is enriched with OCL constraints which

are defined on the types and operations defined in the

model (Mn), including syntax and type checking by

the OCL2 Parser.

3. A new model and queries or code are generated by

using templates or transformation rules defined on

the meta-model elements for the model and its

constraints (Mn+1 and Mn).

The generated queries, or code, can be executed to verify

the specified OCL constraints. Note, that the verification

of constraints is not part of the generative approach but

has to be initialized externally. Depending on the form of

model, query, or code which is generated, the constraints

are verified at Mn-1 (by code execution), or at Mn-1 with

the use of model information at Mn (by querying on

model instances).

4 Use Cases of Dresden OCL

This section presents several OCL use cases supported by

the Dresden OCL Toolkit. Analogous to the two

approaches to verify OCL constraints presented in

Section 3, the use cases are separated into two groups,

interpretative and generative use cases. The different use

cases will be shortly presented and illustrated with

examples.

4.1 Interpretative Use Cases

Interpretative use cases are based on the interpretative

approach which has been presented in Section 3.2.

Possible interpretative use cases are model verification,

testing, design by contract/run-time verification,

simulation/animation, and querying.

Model Verification: Using the OCL2 Interpreter,

constraints can be verified on models. The constraints are

defined on the meta-model (Mn = M2) which shall be

used for modeling. The constraints are interpreted during

the modeling process and if constraint violations occur,

the user is informed that the model contains invalid

constructs. Different reasons for model verification exist:

OCL constraints can be used to describe so called well-

formedness rules (WFRs) that specify, what is required

and not allowed in all instances of such a meta-model.

For example one WFR of the UML2 meta-model defines,

that all features owned by an interface must be public [2]:

context Interface

self.feature->forAll(f | f.visibility = #public)

The task of UML tools is to verify the consistency of the

users’ software models according to the UML meta-

model. Another case of model verification is the

definition of WFRs on a domain-specific language

(DSL). One example is the Plugin Modeling Language

(PML), which can be used to model Eclipse plug-ins [13].

One WFR on the PML meta-model requires, that any

plug-in in a PML model has an id which is not empty

[13]:

context Plugin

inv: not self.id.oclIsUndefined()

The PML is provided as an example model (based on the

EMF Ecore meta-model) for Dresden OCL2 for Eclipse.

Figure 3 shows Dresden OCL2 for Eclipse: The Model

Browser shows the PML meta-model and the WFRs

mentioned above which have been loaded as a model into

the toolkit (Mn+1). The Model Instance Browser shows

two plug-in instances of the PML for which the WFR

shall be checked. The OCL2 Interpreter shows the results

of the WFR’s interpretation which succeeded for one of

the two plug-ins.

Besides the definition of WFRs on existing data-types,

some meta-models like UML [2] can also be extended by

defining stereotypes. New UML profiles can be created

which specialize the meta-model for a certain context.

E. g., using the case tool Magic Draw® UML [10], it is

possible to verify OCL constraints on models which are

specified on meta-model stereotypes. Another example

Russian-German Workshop “Innovation Information Technologies: theory and practice”, Ufa, Russia, 2009

5

Figure 3: A Screenshot of Dresden OCL2 for Eclipse: The Model Browser showing the PML meta-model, the

Model Instance Browser containing two Plug-ins, and the OCL2 Interpreter verifying, whether or not the

plug-ins' id is set.

that uses stereotypes to define WFRs on meta-models is

the Agricultural Case Study by Pinet et al. who use OCL

to define an UML profile <<geographic>> for GIS data

stored in rational data bases [14, 15].

Model verification could also be used to verify additional

modeling guidelines for a specific context. For example a

WFR could ensure that a class in an UML model should

inherit from no, or only one, other class of the model if

the model should be implemented in Java:

context Classifier

inv SingleInheritance:

self.generalization->size()<=1

Simulation/Animation: The interpretative approach can

be used to animate or simulate models. A model, or meta-

model, is modeled using a graphical editor (Mn = M1 or

Mn = M2) and afterwards, the OCL Interpreter is used to

animate or simulate the model. Simulation/animation can

be realized for stateful models like UML activity

diagrams or state charts [16], but is possible for UML

class diagrams as well by instantiating the model with

manually or automatically created model instances which

are used as snapshots [17]. Although model instances are

interpreted during model simulation or animation, the aim

of this use case is not testing the model instances but

testing the model. This is the major difference to the

following use case testing. One of the first case tools

which supported model animation using the interpretative

approach was the case tool USE (UML-based

Specification Environment) [17, 18]. A case study

investigating how models should be tested by using USE

can be found in [19].

Testing: Another use case of the interpretative approach

is testing model instances. The OCL2 Interpreter can be

used to check constraints defined on a model (Mn = M1)

for individual model instances during the software

development process. The constraints can be verified by

the software engineer using interpretation on especially

generated or defined model instances to check whether or

not the defined constraints are fulfilled for the developed

software implementation.

Run-Time Verification: Additionally, the interpretative

approach can be used to verify constraints during

software runtime. Such verification is commonly known

as design by contract [20] or run-time verification [21].

OCL constraints are defined on a model (Mn = M1) and

the OCL2 Interpreter is integrated into a runtime

environment which interprets the constraints for all

instances of the model during their execution. Note that in

contrast to testing in using design by contract, the

constraints are interpreted during software run-time and

not only during software testing in the software

development process. Runtime verification is subject of

current research at the Software Technology Group and

will be implemented by adapting the OCL2 Interpreter of

Model and Object Verification by Using Dresden OCL

6

Dresden OCL2 for Eclipse to the contracting language

Treaty [22, 23].

Another research project on run-time verification has

been realized at the University of Nice-Sophia Antipolis,

France. The OCL2 Interpreter of Dresden OCL (2005

release) was used to verify adaptations of components at

run-time [24, 25, 26]. Adaptations are considered as

behavioral and assembly changes in a component

composition at runtime. Different ways to adapt a

component system were described as adaptation patterns

and safety properties at the model level [26]. Safety

properties were described as sets of OCL constraints

which have to be ensured before adaptation. By

interpreting the results of such constraints, the

consistency of adaptations can be verified and the

adaptation can be undone in case of consistency violation.

Querying: Querying with OCL is also possible using an

OCL interpreter. OCL can be used to define new

operations on a model (Mn = M1) which are executed

and interpreted on model instances of the model. OCL is

a powerful language that, with its navigation operator and

especially its special operations like allInstances()

and oclIsNew(), provides a strong basis to be used as

a query language on both relational databases and run-

time objects in object-oriented software systems. Kolovos

et al. presented a case study which illustrated how OCL

could be used to evaluate queries on relational databases

[27]. For example, the OCL method allInstances()

could be used to return all columns from a table in a

database. In the UML case tool USE [18], OCL is used

for querying as well. They use their interpreter to enable

users to query on objects of snapshots during animation

to find potential erroneous objects [17].

4.2 Generative Use Cases

Generative use cases are based on the generative

approach presented in Section 3.3. Generative use cases

can be divided into two major groups, code generation

use cases and model transformation use cases. Generative

use cases are testing, design by contract/run-time

verification, simulation/animation, and model

transformation.

Testing using Generated Code: The generative

approach can be used to generate test code to verify

constraints for objects during software development. OCL

constraints are defined on a model (Mn = M1) for which

a code implementation shall be tested (M0). The

OCL22Java Code Generator can be used to generate test

code (for example JUnit code [28]), which can be

executed to verify the constraints for specific created

model instances. Note that generated code for testing is

executed by the software developers during the software

development process and is not used during software

runtime.

The Java Code Generator of Dresden OCL2 for Eclipse

does not support JUnit code generation yet. But the

template-based code generation could be easily adapted

to generate JUnit code. Such an implementation has been

investigated by a thesis at the Swiss Federal Institute of

Technology, Zurich [29].

Design by Contract or Run-time Verification using

Generated Code: Similar to testing is the generation of

constraint code to realize design by contract [20] or run-

time verification [21]. But in contrast to testing, the

generated constraint code is not only executed during the

software development process, but also during software

run-time. Again, the constraints are defined on the model

(Mn = M1) and executable code is generated using the

templates defined on the meta-model (M2).

Different solutions exist to realize run-time verification or

design by contract using generated code. The old Java

Code Generator of the Dresden OCL Toolkit (2005

release) supported code instrumentation of Java code,

which generated the assertion code directly into Java

source code [30, 31]. Dresden OCL2 for Eclipse provides

an OCL22Java Code Generator which generates AspectJ

[12] code that can be woven into existing Java code to

ensure the specified constraints at software run-time [32].

Some of the advantages of an aspect-oriented approach

are that the verification code can be woven into both,

source and byte code, and that the concern of verification

is cleanly separated from the business logic.

Simulation/Animation using Generated Code:

Generated code of the Code Generator could be used to

animate or simulate model elements as well as an OCL

interpreter. The modeled meta-model, or model (Mn =

M2 or Mn = M1), enriched with OCL constraints could

be transformed into executable code snippets which are

used to animate or simulate the model in a graphical

editor during modeling [16].

For example, Dresden OCL has been integrated into the

modeling case tool MagicDraw® UML [10], which uses

the toolkit’s Java Code Generator (2005 release) to

enable UML model and object animation.

Model Transformation: Another major use case of the

generative approach is model transformation. Model

transformation uses a generation or transformation

framework to transform a model into another model

defined on another meta-model. A model (Mn = M1) is

transformed using transformation rules defined on its

meta-model (M2). The OCL constraints specified on the

model are transformed as well. Some model

transformations are UML/OCL to SQL schema

transformation, and UML/OCL to XML/XQuery

transformation (both supported with the second version of

the Dresden OCL Toolkit, 2005 release) [10].

Furthermore, other model transformations like UML/OCL

Russian-German Workshop “Innovation Information Technologies: theory and practice”, Ufa, Russia, 2009

7

to SBVR [34], or vice versa, have been evaluated in

research projects [35].

Note that depending on the target meta-model, model and

constraints can be transformed together into a new model

(e.g., SBVR), or the OCL constraints can be transformed

into additional queries which work on the transformed

model (e.g., XML/XQuery or SQL).

Another approach of model transformation was

developed at the Software Technology Group by

integrating OCL constraints into the model transformation

process of Fujaba [36, 37]. OCL support was integrated

into Fujaba’s story diagrams which are used to transform

method specifications into executable code. In this

context, OCL was not used to specify constraints on a

model but to specify the model’s semantics platform

independently. The expressions defined in OCL in the

method’s semantic specification are used to transform the

model into different platform specific models like Java or

C++ code [37].

5. Conclusion

The Dresden OCL Toolkit looks back on a decade of

research and development. Our intention was, and is still,

to make several OCL tools available to other tool

developers as an open source library under the LGPL

license. In this paper, we presented different use cases in

the software development that could benefit from using

OCL. Some of the known integrations with other tools

and tool chains as well as projects using Dresden OCL

were cited as examples.

Most of the today's UML tools provide a "constraint

field" according to the UML standard. However, only few

UML tools support the processing of OCL constraints up

to now. A first step in the processing of OCL constraints

(or more generally OCL expressions) is parsing and

checking the static semantics such as checking if all

names are valid attributes and association ends in the

underlying model. Such "preprocessed" OCL constraints

helps to document the semantics of models. But the actual

purpose using OCL is to evaluate the constraints on

models or objects. Dresden OCL provides two basic

evaluation approaches: the interpretative and the

generative approach. Another facet is the matter on what

MOF layer OCL expressions should be specified. It can

be used, for example, to check WFRs (specified at the

meta-model layer and evaluated on model) or to check

business rules (specified at the model layer and evaluated

on objects). Besides these basic model and object

verification use cases, further scenarios are possible. The

second version of OCL provides features to query models

and objects and to derive new elements. Therewith, OCL

becomes a model transformation and query language.

We know about many use cases of the Dresden OCL

toolkit and are always interested to get feedback using

OCL both in the industrial and academic field. Moreover,

we invite the open source community to make

contributions by new or enhanced tools. We are aware

that the use of a formal language in the general software

practice is a long way. Only user-friendly and robust OCL

support can convince software developers to use OCL in

their daily work to make software systems more secure

and better maintainable.

Acknowledgments

The authors would like to thank all people who have

contributed to the Dresden OCL Toolkit project.

Moreover, we thank Florian Heidenreich for his helpful

comments to this paper.

References

1. OMG OCL Specification:

http://www.omg.org/docs/formal/06-05-01.pdf

2. OMG UML Specification:

http://www.omg.org/spec/UML/2.2/

3. OMG MOF specification: http://www.omg.org/

technology/documents/formal/mof.htm

4. Eclipse Modeling Framework (EMF):

http://www.eclipse.org/modeling/emf/

5. Dresden OCL Toolkit:

http://dresden-ocl.sourceforge.net

6. Demuth B. “The Dresden OCL Toolkit and its Role

in Information Systems Development” In: 13th

International Conference on Information Systems

Development: Methods and Tools, Theory and

Practice Conference, Advances in Theory, Practice

and Education (ISD'2004), Vilnius, Lithuania, 9-11

September, 2004.

7. Bräuer M., Demuth B. “Model-Level Integration of

the OCL Standard Library Using a Pivot Model with

Generics Support”. In: Giese H. (ed.) Models in

Software Engineering, Springer-Verlag Heidelberg,

2008, pp. 182-193. (Lecture Notes in Computer

Science No. 5002).

8. Eclipse Model Development Tools (MDT):

http://www.eclipse.org/modeling/mdt/

9. Topcased: http://www.topcased.org/

10. MagicDraw® UML: http://www.magicdraw.com/

11. Visual Paradigm: http://www.visual-paradigm.com/

12. The AspectJ Project: http://www.eclipse.org/aspectj/

13. Bräuer M. “Design and Prototypical Implementation

of a Pivot Model as Exchange Format for Models

and Metamodels in a QVT/OCL Development

Environment”. Minor Thesis (Großer Beleg),

Technische Universität Dresden, Germany, May

2007.

14. Pinet F., Duboisset M., Demuth B., Schneider M.,

Soulignac V., Barnabé F. “Constraints Modeling in

Agricultural Databases”. In: Papajorgji P. J.,

Pardalos, P. M. (eds.) Advances in Modeling

Agricultural Systems Series. Springer-Verlag,

Model and Object Verification by Using Dresden OCL

8

Heidelberg, 2009, pp. 1-11. (Springer Optimization

and Its Applications, No. 25).

15. Pinet F., Kang M.-A., Vigier F. “Spatial Constraint

Modelling with a GIS Extension of UML and OCL:

Application to Agricultural Information Systems”. In

Wiil, U. K. (Ed.) Metainformatics, Springer-Verlag,

Heidelberg, 2005, pp. 160-178. (Lecture Notes in

Computer Science No. 3511).

16. Kirshin A, Moshkovich D, Hartman A. “A UML

Simulator Based on a Generic Model Execution

Engine”. In: Kühne T. (ed.) Models in Software

Engineering, Springer-Verlag, Heidelberg, pp. 324-

326. (Lecture Notes of Computer Science No. 4364).

17. Richters M., Gogolla M. “Validating UML models

and OCL constraints.“ In Evans A., Kent S., Selic B.

(eds.) UML 2000 - The Unified Modeling Language,

Springer-Verlag, Heidelberg, 2000, pp. 265-277

(Lecture Notes in Computer Science No. 1939).

18. USE: http://www.db.informatik.uni-bremen.de/

projects/use/

19. Aydal E. G., Paige R. F., Woodcock J. “Observations

for Assertion-based Scenarios in the context of

Model Validation”. In: Cabot J., Gogolla M., Van

Gorp P. (eds.), Proceedings of the 8th International

Workshop on OCL Concepts and Tools (OCL 2008)

at MoDELS 2008, Electronic Communications of the

EASST, Technische Universität Berlin, 2008.

20. Meyer B. “Object-Oriented Software Construction”,

Ed. 2. Prentice Hall, Upper Saddle River, New

Jersey, 1997.

21. Colin S., Mariani, L. “Run-Time Verification” In:

Broy. M, Jonsson B., Katoen J.-P., Leucker M,

Pretschner A. (eds.) Model-Based Testing of

Reactive Systems, Springer-Verlag, Heidelberg,

2005. (Lecture Notes in Computer Science No.

3472).

22. The Treaty Project: http://code.google.com/p/treaty/

23. Wilke C. “Model-Based Run-Time Verification of

Software Components by Integrating OCL into

Treaty”. Diploma Thesis, Technische Universität

Dresden, Germany, scheduled in September 2009.

24. Ocello A., Dery-Pinna A.-M., Riveill, M. “A

Runtime Model for Monitoring Software Adaptation

Safety and its Concretisation as a Service”. In:

Bencomo N., Blair G., France., Muñoz F., Jenneret

C. (eds.) Proceedings of the 3rd Workshop on

Models@run.time at the 11th International

Conference on Model Driven Engineering

Languages and Systems (MoDELS2008), Toulouse,

France, 2008, pp. 67-76.

25. Ocello A., Dery-Pinna A.-M. “Safe runtime

adaptations of components: a UML metamodel with

OCL constraints.” In: Kniesel G., Mens T. (eds.)

Proceedings of the 1st International Workshop on

Foundations of Unanticipated Software Evolution

(FUSE), Barcelona, Spain, March 2004, pp. 69-83.

26. Occello, A., Dery-Pinna, A.-M., Riveill, M.

“Validation and Verification of an UML/OCL Model

with USE and B: Case Study and Lessons Learnt” In:

Software Testing Verification and Validation

Workshop, 2008. ICSTW '08. IEEE International

Conference on Software Testing, Verification, and

Validation (ICST), IEEE Digital Library,

Lillehammer, April 2008, pp. 113-120.

27. Kolovos D. S., Paige R. F., Polack F. A. C.

“Towards using OCL for Instance-Level Queries in

Domain Specific Languages” In Demuth B.,

Chiorean D., Gogolla M., Warmer J. (eds.)

Proceedings of the 6th OCL Workshop “OCL for

(Meta-) Models in Multiple Application Domain” at

the 9th International Conference on Model Driven

Engineering Languages and Systems

(MoDELS2006), Technische Universität Dresden,

Germany, September 2006, pp. 26-37.

28. JUnit: http://www.junit.org/

29. Stock, M. “Automatic Generation of JUnit Test-

Harnesses.” Semester Thesis, Swiss Federal Institute

of Technology, Zurich, Switzerland, March 2007.

30. Wiebicke, R “Utility Support for Checking OCL

Business Rules in Java Programs”. Diploma Thesis,

Technische Universität Dresden, Germany,

December 2000.

31. Brandt, R. „Java-Codegenerierung und

Instrumentierung von Java-Programmen in der

metamodellbasierten Architektur des Dresden OCL

Toolkit“. Minor Thesis (Großer Beleg), Technische

Universität Dresden, Germany, September 2006.

Published in German.

32. Wilke C. “Java Code Generation for Dresden OCL2

for Eclipse.” Minor Thesis (Großer Beleg),

Technische Universität Dresden, Germany, March

2009.

33. Heidenreich F., Wende C., Demuth B. “A

Framework for Generating Query Language Code

from OCL Invariants”. In: Akehurst D. H., Gogolla

M., Zschaler S (eds.) Proceedings of the Workshop

Ocl4All: Modelling Systems with OCL at MoDELS

2007, Technische Universität Berlin, Germany,

2008. (Electronic Communications of the EASST

(ECEASST), No. 9).

34. OMG SBVR Specification:

http://www.omg.org/spec/SBVR/1.0/

35. Pau R., Cabot J. “Paraphrasing OCL Expressions

with SBVR”. In: Kapetanios E., Sugumaran V.,

Spiliopoulou M. (eds.) Natural Language and

Information Systems, Springer-Verlag, Heidelberg,

2008, pp. 311-316. (Lecture Notes of Computer

Science No. 5039).

36. Fujaba Tool Suite: http://www.fujaba.de/

37. Stölzel M., Zschaler S., Geiger L. “Integrating OCL

and Model Transformations in Fujaba” In Demuth

B., Chiorean D., Gogolla M., Warmer J. (eds.)

Russian-German Workshop “Innovation Information Technologies: theory and practice”, Ufa, Russia, 2009

9

Proceedings of the 6th OCL Workshop “OCL for

(Meta-) Models in Multiple Application Domain” at

the 9th International Conference on Model Driven

Engineering Languages and Systems

(MoDELS2006), Technische Universität Dresden,

Germany, September 2006, pp. 140-150.

